九年级上册数学《二次根式》知识点整理范文_第1页
九年级上册数学《二次根式》知识点整理范文_第2页
九年级上册数学《二次根式》知识点整理范文_第3页
九年级上册数学《二次根式》知识点整理范文_第4页
九年级上册数学《二次根式》知识点整理范文_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二次根式一、本节学习指导学习二次根式时,我们把平方根的知识顺带巩固一下。这就是系统性学习,这样学习的 好处是把零碎的知识可以系统起来。本节中我们要对二次根式有意义的条件要掌握。二、知识要点1、二次根式的概念:形如苗(a20)的式子叫做二次根式。注意:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必 须注意:因为负数没有平方根,所以a20是而为二次根式的前提条件,如頁,x、二次根式无意义的条件:因负数没有算术平方根,所以当a<0时,需没有意义。3、二次根式需(a20)的非负性& (a0)表示a的算术平方根,也就是说,五(a>0)是一个非负数,即需(a

2、20)。注意:因为二次根式亦(a20)表示a的算术平方根,而正数的算术平方根是正数,0的 算术平方根是0.所以非负数(a>0)的算术平方根是非负数,即(J7)2 (a$0),这个性 + l , 等是二次根式,而后,等都不是二次根式。2、取值范围(1) 、二次根式有意义的条件:由二次根式的意义可知,当a全0时,苗有意义,是二次 根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用 较多,如若 + xfb =O ,则 a=0, b 二 0;若-Ja + /?Q中的a的取值范围可以是任意实数,即不论a取何

3、值,J庐一泄有意义: 化简后时,先将它化成问,再根据绝对值的意义来进行化简。6. ()2与后的异同点1、不同点:()2与J狂表示的意义是不同的,(苗)2表示一个正数a的算术平方根的平 = O ,则 a=0, b 二 0:若 J7+b'=0,则 a=0, b二0。4、二次根式(7Gy 的性质:(>a)2=a (a>0)描述为:一个非负数的算术平方根的平方等于这个非负数。注意:二次根式的性质公式(a20)是逆用平方根的左义得出的结论。上面的公式也可以反过来应用:若a0,则a =(耐,女口: 2 = (2)2, i = (Ji)2 o5.二次根式的性质描述为:一个数的平方的算术平

4、方根等于这个数的绝对值。注意:(1) 、化简后时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等 于a本身,即= a = a(a0);若a是负数,则等于a的相反数-a,即 2 1.414;1.732:5 2.236 ; JTZ2.646 :BiflIJUE本站视频教学资遞全部免费Q加速度学习网方,而后表示一个实数a的平方的算术平方根:在(苗F中2王而后中a可以是正实数,0,负实数。但(7)2与倚都是非负数,hp()2o, 70o因而它的运算的结果是有差别的,(7)2= (a0)a(a 0) -G(G < 0)2、相同点:当被开方数都是非负数,即时,(亦)2二后:a<

5、0时,(Je2无意义,而 a = -G o7、二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算 术根代替而移到根号外而:如果被开方数是代数和的形式,那么先解因式,变形为积的形 式,再移因式到根号外而,反之也可以将根号外而的正因式平方后移到根号里而.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式4ab = yayfb (a0, b0);J-=(b$0, a>0).Ya yja(4)有理数的加

6、法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项 式的乘法公式,都适用于二次根式的运算.三. 经验之谈:特别要注意这个式子:a(a 0)-a(a < 0)这个运算过程是区别于(、低F的依据。本节中还要注意根式的运算,有很多同学错误的以为:J7+丽=屁,根式的加减 法,如果不是同类项的话是不能合并的,比如:2 + 8=2 + 22=32 ,而2+5 目前我们只能估算,或是就保持最简因式。本节中还要记住一些常见根式的约等数,常见的有2 1.414;3 1.732;5 2.236 ;7 2.646一元二次方程解法一、本节学习指导一元二次方程的概念比较少,但遇到题目的时候还挺考验

7、经验积累的。所以本我们要 多做练习,多思考,多积累。在中考中这部分知识会和函数等结合,到时候涉及综合知识就 比较多,希望同学们能掌握好本节的解题方法。二. 知识要点K降次一直接开平方法(将被开放式看作一个整体)例:(2x + 1)2=5W-z2- + 1=±5±5-lX =25-l-5-l=丁书=2、配方法步骤:(1)二次项系数化为1(2)在方程左边同时加上并减去一次项系数一半的平方(3)化简整理,再用直接开平方法解方程例:疋 +5x-6 = 0 ft?:(X-I)(X+ 6) = 0X-I = O 或 + 6 = 0XI = l,x2 = 6三、经验之谈:有一点我要提醒一

8、下大家,解数学题时很多同学总是想着找简单的方法,浪费了很多时 间在''想”上面,就像本Yj的求根公式很多同学都不愿意实用,因为汁算起来实在太麻烦。 其实很多“老式”解题步骤的确很繁琐眞就管用。有句话说:"笨鸟先飞嘛”!图形的旋转一、本节学习指导本节我们重点了解旋转、平移性质,除外还有一个重点是点的对称变换。本节有配套免 费学习视频。二知识要点1、旋转:将一个图形绕着某点0转动一个角度的变换叫做旋转。苴中,0叫做旋转中心, 转动的角度叫做旋转角。2、旋转性质 旋转后的图形与原图形全等 对应线段与0形成的角叫做旋转角 各旋转角都相等3、平移:将一个图形沿着某条宜线方向平移

9、一立的距离的变换叫做平移。英中,该直线的 方向叫做平移方向,该距离叫做平移距离。AB,CBiflIJUE本站视频教学资遞全部免费Q加速度学习网4、平移性质 平移后的图形与原图形全等 两个图形的对应边连线的线段平行相等(等于平行距离) 各组对应线段平行且相等5、中心对称与中心对称图形 中心对称:若一个图形绕着某个点O旋转180° ,能够与另一个图形完全重合,则这 两个图形关于这个点对称或中心对称。其中,点0叫做对称中心、两个图形的对应点叫做关 于中心的对称点。 中心对称图形:若一个图形绕着某个点0旋转180° ,能够与原来的图形完全重合, 则这个图形叫做中心对称图形。貝中,这

10、个点叫做该图形的对称中心。6、轴对称与轴对称图形(1)、轴对称:若两个图形沿着某条轴对折,能够完全重合,则这两个图形关于这条轴对 称或它们成轴对称。貝中,这条轴叫做对称轴。注:轴对称的性质:两个图形全等:对应点连线被对称轴垂直平分(2)轴对称图形:若一个图形沿着某条轴对折,能够完全重合,则这个图形叫做轴对称 图形。7、点的对称变换(1)、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P (x. y)关于原点的对称点为Pr (一X, -y)(2)、关于X轴对称的点的特征两个点关于X轴对称时,它们的坐标中,X相等,y的符号相反,即点P (, y)关于X 轴的对称点为P

11、9; (, -y)(3) 、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,X的符号相反,即点P (, y)关于y 轴的对称点为P' (-, y)(4 )、关于直线y=x对称两个点关于直线y=x对称时,横坐标与纵坐标与之前对换,即:P <x, y)关于直线 y=的对称点为P' (y, )(5) 、两个点关于直线y=-x对称时,横坐标与纵坐标与之前完全相反,即:P(X, y)关 于直线y=x的对称点为P'(-y, -X)注:y=的直线是过一三象限的角平分线,y=-的宜线是过二四象限的角平分线。三,经验之谈:本节中点的对称变换考得相对较多,如果在大脑

12、中百思不得英解的话,我们可以动手作图出来观察。圆知识点总结圆与三角形、四边形一样都是研究相关图形中的线、角、周长、而积等知识。 包括性质定理与判定定理及公式。集合:圆:圆可以看作是到定点的距离等于左长的点的集合:圆的外部:可以看作是到定点的距离大于泄长的点的集合;圆的内部:可以看作是到左点的距离小于泄长的点的集合 二轨迹:1、到左点的距离等于泄长的点的轨迹是:以左点为圆心,泄长为半径的圆;BiflIJUE加速度学习网本站视频教学资遞全部免费Q2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线:4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条

13、直线的距离等于立长的两条直线:5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 三位宜关系:1点与圆的位置关系: 点在圆内d<r点在圆上d=r点在此圆外d>r2直线与圆的位置关系: 直线与圆相离d>r直线与圆相切d=r直线与圆相交d<r点C在圆内 点B在圆上 点A在圆外无交点 有一个交点 有两个交点3圆耳圆的位宜关系:外离(图D 外切(图2) 相交(图3) 内切(图4) 内含(图5无交点有一个交点 有两个交点 有一个交点 无交点d>R+rd=R+rd=R-rR-r<d<R+rd<R-r四垂径左理: 垂径泄理

14、:垂直于弦的直径平分弦且平分弦所对的弧推论1: (I)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条狐的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个泄理,简称2推3泄理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:AB是直径AB丄CD CE=DE BC = BDAC = AD推论2:圆的两条平行弦所夹的弧相等。即:在00中,V ABCD五圆心角定理E圆心角左理:同圆或等圆中,相等的圆心角所对 的弦相等,所对的弧相等,弦心距相等 此定理也称1推3立理,即上述四个结论中,只 要知

15、道其中的1个相等,则可以推出英它的3个 结论也即:Z AOB= Z DOEAB=DEOC=OF BA = ED六圆周角泄理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:VZAOB和ZACB是所对的圆心角和圆周角 ZAOB=2ZACB圆周角泄理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在OO中,VZC. ZD都是所对的圆周角 ZC=ZD推论2:半圆或宜径所对的圆周角是直角:圆周角是直角所对的弧是半圆,所对的弦是直径即:在Oo中,VAB是直径或T ZC=90oA ZC=90oAAB 是直径推论3:三角形一边上的中线等于这边的一半,那么

16、这个三角形是直角三角形 即:在 ABC 中,VOC=OA=OBABC是直角三角形或ZC=90o注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的 一半的逆立理。七圆内接四边形圆的内接四边形左理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在G>O中,四边形ABCD是内接四边形 ZC+ZBAD=180o B+ZD=180oZDAE=ZC八切线的性质与判泄定理(1)判左立理:过半径外端且垂直于半径的直线是切线 两个条件:过半径外端且垂直半径,二者缺一不可即:TMN丄OA且MN过半径OA外端MN是00的切线(2)性质泄理:切线垂宜于过切点的半径(如上图) 推论

17、1:过圆心垂直于切线的直线必过切点 推论2:过切点垂直于切线的直线必过圆心以上三个立理及推论也称二推一沱理: 即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件BiflIJUE加速度学习网本站视频教学资遞全部免费QTMN是切线MN 丄 OA切线长左理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:.PA PB是的两条切线APA=PBPo平分ZBPA九圆内正多边形的计算1 : 尸:2,(!)正三角形在00中 AABC是正三角形,有关计算在RtBOD中进行,OD:BD:OB=(2)正四边形同理,四边形的有关计算在RtOAE中进行,OE :AE:OA=1:1:72(3)正六边形同理,六边形的有关计算在RtOAB中进行,AB:OB:OA=lz3 :2十、圆的有关槪念1、三角形的外接圆、2、三角形的内切圆、外心。内心。一用到:线段的垂直平分线及性质 一用到:角的平分线及性质3、圆的对称性。一V轴对称中心对称卜一、圆的有关线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论