EEEFL放电原理_第1页
EEEFL放电原理_第2页
EEEFL放电原理_第3页
EEEFL放电原理_第4页
EEEFL放电原理_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、如文档对您有帮助,欢迎下载支持,谢谢!EEFL放电原理的分析作者:佚名信息来源:照明工程师社区阅:1121发布时间:2007年3月26日编录:adminEEFL放电原理的分析摘 要:本文论述了 EEFL的基本结构与性能特点,着重提出了对EEFL放电原理的理解与分析,以供参考。关键词:外置电极荧光灯;结构;放电原理;无极放电;一、前言EEFL是外置电极荧光灯 (External Electrode Fluorescent Lamp)的简称,其结构特点是灯管内部没有安放电极,玻管内除充有工作气体及内表面涂有荧光粉层之外,可以说是根“空管"。EEFL玻管两端的外表面包裸了一层导电层或金属套

2、管,形成对灯管放电有重要影响的外电极,EEFL的名称亦由此而来。图1. EEFL的基本结构示意图1玻管 2三基色荧光粉层3外电极 4工作气体(Ne Ar、Hg混合气)为了对EEFL的结构与性能特点有比较直观的了解,让我们先做几个实验。取一根直径3mm勺玻管,经过正常排气工艺并充入 80天短气之后封离下来,看起来这确是一根干净明亮的“空”玻管。在此透明玻管的两端,紧贴玻管外表面包裹一层铝箔,然后将这玻管两端的铝箔与冷阴极荧光灯CCFL2变电源的输出端相连,当电源开关一开,便立即点燃了玻管内的短气放电而发出明亮的红光,如同一根细管霓虹灯。其实,可以说这就是一根外置电极霓虹灯。如果将上述玻管内的充气

3、换成 Ne Ar、Hg混合气,且在玻管内壁涂敷一层荧光粉层,则上述的外置电极霓虹灯就变成了外置电极荧光灯EEFL了。将相应的CCF境变器电源的输出端与其外电极相连,就可以像CCFL一样点燃而发光。事实上,任何一只荧光灯,在玻管两端外表面包上导电层而形成外电极之后,都构成了某种类型的 EEFL,都能用输出13千伏的高频电源点亮。由此可见,EEFL其实与我们之间的距离是如此的接近!通过上述,使我们切实地感觉到了EEFL的第一个突出的特点,那就是结构简单、工艺简便、成本较低。EEFL第二个突出的特点是电性能方面的,那就是EEFL灯管可以直接并联使用,即直接并联燃点。当需要同时点亮多根 EEFL时(如

4、LCD彩色电视的直射式背光源),往往只需要用一只高频驱动电源就可以直接点亮数只至数十只EEFL, 因而使用十分简便且成本较低。须知 , 几乎所有的气体放电灯都不能直接并联使用,难得EEFL给我们如此的便利!除上述之外,不少资料报导EEFL还具有比CCFL更高的亮度与更长的寿命,因而认为 EEFL是CCFL技术进步的产物,是二十一世纪初兴起的并即将取代CCFL的新光源。EEFL果真比CCFL价廉物美而即将取代 CCFL吗?从近几年的实际发展情况看,目前还并非如此。尽管人们对EEFL极有兴趣与期盼,试制与试用EEFL的企业也确实不少,但至今还处于试用阶段,其产销量远不能与CCFL相比。为什么呢?是

5、因为我国EEFL产品的性能一致性与稳定fiE还不够好,尤其是 EEFL对其配套的高频驱动电源要求较高,现有产品中很多满足不了使用要求而不能正常使用。因此,目前EEFL 的发展面临着灯管与配套电路两方面的技术都需要进一步提高的问题。2、 EEFL 的放电原理EEFL结构如此简单、点亮如此容易、直接并联使用是如此的方便,使得人们一接触它就萌生兴趣,想要问个究竟,加之当前提高EEFL性能的任务迫在眉睫,因此,切实弄清EEFL的放电原理的研究已不容回避。只有正确认识 EEFL中气体放电的基本过程,从基本概念出发来改进EEFL的结构与工艺,才会收到好的成效。可是,在所看到的有关 EEFL的论文资料中,谈

6、及 EEFL的放电原理时总是一带而过,只有几句笼统的话,没有比较确切的分析与论述。例如,有的只提及属于电磁感应无极放电,那就是说与人们熟知的无极荧光灯一样,这显然有误。因为EEFL不可能有很强的高频磁场通过灯管而能够感应产生足以点燃放电的高频电场;有的提到是高频电场通过EEFL外电极与管壁电容的耦合输入灯管而引起管内气体放电,属于高频无极放电;有的认为是加于外电极的高频电压通过玻璃介质而产生的气体放电,属于介质阻挡层无极放电等等。根据“凡电极不暴露在电离气体中的放电方式称为无极放电”的定义,EEFL管内没有安装电极,只有装置在玻管两端外表面的外电极,看来属于无极放电是无可非议的。然而,深入分析

7、EEFL所发生的气体放电过程,发现电极过程仍然是维持EEFL高频放电所不可少的,具体地说EEFL仍然存在发射电子的阴极与加速电子、正离子的阴极位降。为了说明这一点,让我们重温 气体放电理论对高频放电几种情况的分析。气体在高频能量的激励下产生的放电称为高频放电,其电流密度 j 为:j=nee2 u/me( u 2+3 2)E (1)式中E为电场强度,3为外加高频电场的角频率,U为电子有效碰撞频率,U由下式计算:U =3.19 X 109X P/,Te0.5(2)式中 P 为气压(mm Hg),Te 为电子温度 (K) 。按照外加高频电场角频率3与电子有效碰撞频率U的相对大小,高频放电可以分成3

8、<< U、3里U、3 >>U三种情况。其中当3<<U时,发生类似于低频放电的情形,这时电子在高频电场下的运动 象一群蜜蜂随风飘动一样向高频电场的瞬时阳极漂移;电场反向时又反向漂移。放电空间仍然存在等离子区与阴极位降区,仍然需要有阴极发射电子才能维持这种情况下的高频放电。其与低频放电不同之处是高频电场变化的周期小于放电空间的消电离所需的时间,由此,等离子区来不及消失,高频电场的极性交变,只影响阴极位降区输流出现在等离子区的两侧。当外加高频电场的频率大幅提高到3里U与3 >>U时,放电中电子的运动将发生根本性的变化,等离子区中电子受到高频电场的作用而

9、不断来回运动,增加了电子产生碰撞电离的几率,此时维持稳定的放电已无需电极过程,也就是说不需要阴极发射电子 ,不需要阴极,不存在阴极位降区,从而形成了高频电场作用下的无极放电。 这种高频无极放电的实例发生于雷达天线开关, 其工作频率约为1000 兆赫 ,放电管内的气压不大于20 乇。对照上述关于高频放电的理论分析,我们熟知的电子镇流荧光灯ECFL与冷阴极荧光灯CCFL工作频率均为20KHl 100KH25,均属于3<<u的情况,放电具有稳定的等离子区与维持放电所必须的阴极位降 区,阴极的电子发射对放电起着至关重要的作用。让我们再回到 EEFL中的气体放电。EEFL的工作频率与 CCF

10、L-卞( 20KHZ- 100KHZ ,充气种类与气压也与CCFL类似,因此,它们的放电类型也是类似的(属 3 << u的一类)。具体地说,EEFL中的放电仍然必须有阴极与阴极位降区的存在才能维持稳定的放电。可是,EEFL 的阴极在哪里呢?外电极与放电气体隔着玻璃管壁,它是不可能作为气体放电的阴极来发射电子的。本人认为,与外电极相对的玻管内壁表面就是EEFL的内电极。当某外电极为正电位的半周时,对应的内壁玻璃表面吸引而接收电子,垒积壁电荷;为负半周时,吸引与加速正离子,并受正离子轰击而产生二次电子发射,形成阴极位降区。可能有人要问,玻璃是绝缘体,能够担当电极的角色吗?我认为完全可以

11、。玻璃表面可以接收电子而垒出壁电位,这在交流等离子显示器放电过程的分析中早已说得明明白白;另一方面,玻璃在正离子轰击时可以产生二次电子发射,也是得到公认的。由于施加的是高频电压,内壁的电位变化可以通过玻璃壁形成的电容传到外电极再传到外电路,没有什么说不通的地方。需要着重说明,上述EEFL由外电极对面的玻璃内壁所形成的内电极有一个突出的特点,那就是为无数的“微岛”状,因为玻璃内表面必竟不是金属电极,其表面是不导电的,无论内表面那一点吸引电子形成壁电荷(或吸引正离子且产生二次电子发射而垒积正电荷),点与点之间均不能有电的沟通,我们可以称它为“微岛”电极。因此,可以认为EEFL的内电极是由与外电极对

12、应的玻璃内壁上的无数“微岛”电极所组成的。综上所述,我们可以画出EEFL 的等效电极结构的原理图,如图2 所示:图 2 EEFL 等效电极结构原理图1 外电极 2 放电空间 3 玻璃电容4“微岛”电极有一种为多数人所接收的观点,认为高频电场由外电极通过玻壁电容引入EEFL放电空间,直接作用于放电的等离子区而产生与维持稳定的高频无极放电。我们现在不谈前述的理论对这种观点的否定,而是从反证的角度来加以分析。如果只要引入高频电场就可以无需电极作用而能够维持稳定的放电,那么与EEFL放电条件相同的CCFL由电极直接将高频电场引入放电空间又为什么必须依靠电极过程才能维持稳定的放电呢?如果电极过程真是无关

13、紧要,那么CCFL的电极过程为什么会集中那么多的功率,对放电性能产生由其重要的影响呢?为了考察EEFL内壁电极是否存在,我们可以通过观察EEFL外电极对应的内壁表面是否存在阴极位降区来判断,将拍得的实物照片示于图3。从图3 可以清楚地观察到等离子区玻璃内壁的发光与外电极对应的玻璃内壁的发光是大不一样的。等离子区对应的内壁表面不发红光,而外电极对应的内壁表面却与CCFL电极表面相类似地发红光。原因很清楚,荧光灯的等离子区电子能量较低,不能引起短原子激发,只 有在阴极位降区电子被加速成高能电子才可以使氖原子激发后返回跃迁时发红光。图3观察EEFL玻璃内壁发光的照片另外,我们对寿命试验数千小时后的E

14、EFL灯管进行解剖,等离子区对应的玻璃内壁表面状况变化不大,而外电极对应的玻璃内壁则严重发黑,这显然是正离子轰击阴极带来的后果。最后,我们对比性地测出相同结构(相同的玻璃、相同的直径、相同的生产工艺)的CCFL与EEFL的输出光通量与输出功率之间的光效曲线,发现它们的形状与数据都相当接近,这也说明EEFL与CCFL中产生的是相同类型的放电,不存在放电原理的重大差异。在此不再详述。上述有关EEFL放电原理的分析可能有重要的实际意义,那就是提高EEFL的性能,应该十分关注作为内电极的灯管两端内壁的表面状态,采用什么样的工艺、材料甚至增加某种涂层,有可能显著地提高EEFL的性能与寿命。3、 EEFL

15、 的应用前景EEFL作为广告、照片、图片的超薄灯箱以及平板电视中液晶彩色电视的背光源,尤其是大屏幕的液晶彩电的直射式背光源十分被看好,只要性能可靠就很可能会被许多用户列为首选产品,原因就是前面提到过的它可以直接并联使用的独到优点,还有就是它较低的生产成本所带来的较低的价格。有一位日本生产液晶彩电的企业人士在不久前遍访了南京几乎所有的CCFL EEFL生产厂,他声称液晶彩电即将大量普及,未来的三年,CCFLe EEFL的需求将大幅增加而供不应求。原因是液晶屏的成本将一年一个台阶的下降,使其他平板电视难以竞争。我相信他的预计。因此,EEFL的应用前景随着液晶电视与超薄灯箱的推广是可以十分乐观的。人们一定要说,不要忘记LED, LED作为背光源将是最后的归属。但是,不管最后的情形如何,我认为 5至十年之内,LED难成气候。还是上述那位日本人士提供的信息,他说其公司已经解决了用LED制做几种主要规格的液晶彩电背光源的所有技术问题,都做成了很好的样品,可以成功展示,但是成本很高。例如一个中等屏面所需的背光源,用了三千五百只高显色

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论