4生活中的优化问题举例学案_第1页
4生活中的优化问题举例学案_第2页
4生活中的优化问题举例学案_第3页
4生活中的优化问题举例学案_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、§3.4生活中的优化问题举例2学习目标掌握用导数解决实际中简单的最优化问题,构建函数模型,求函数的最值.学习过程一、课前准备预习教材卩血P104,找出迷惑之处复习1:物体的运动方程是的单位:,的单位:,那么物体在时刻时的速度 =,加速度复习2:函数在上的最大值是最小值是二、新课导学探学习探究探究任务一:磁盘的最大存储问题问题:1 你知道计算机是如何存储、检索信息的吗?2 你知道磁盘的结构吗?3如何使一个圆盘的磁盘存储尽可能多的信息?新知:计算机把信息存储在磁盘上磁盘是带有磁性介质的圆盘,并由操作系统将其格式化成磁道和扇区.磁道是指不同半径所构成的同心圆轨道,扇区是指被圆心角分割成的扇

2、形区 域.磁道上的定长的弧可作为根本存储单元,根据其磁化与否可分别记录数据0和1,这个基本单元通常称为比特,磁盘的构造如图:为了保证磁盘的分辨率,磁道之间的宽度必须大于,所占用的磁道长度不得小于.为了数据检索的方便,磁盘格式化时所要求所有磁道具有相同的比特数试试:现有一张半径为 R的磁盘,它的存储区是半径介于与的环行区域 .1是不是越小, 磁盘的存储量越大? 2为多少时,磁盘具有最大存储量最外面的磁道不存储任何信息 ? 解析:存储量=磁道数x每磁道的比特数.设存储区的半径介于与之间,由于磁道之间的宽度必须大于,且最外面的磁道不存储任何信息,所以磁道数最多可到达 .又由于每条磁道上的比特数相同,

3、为获得最大的存储量,最内一条磁道必须装满,即每条磁道上的比特数可到达 .所以,磁盘总存储量为:探典型例题例1圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?才能使饮料变式 :当圆柱形金属饮料罐的外表积为定值时,它的高与底面半径应怎样选取, 罐的容积最大?例 2 某商品生产本钱与产量的函数关系式为,价格 p 与产量 q 的函数关系式为 求产量q 为何值时,利润最大?分析: 利润等于收入减去本钱, 而收入等于产量乘价格 由此可得出利润与产量 q 的函数关 系式,再用导数求最大利润变式:某商品生产本钱 C与产量q的函数关系为,价格 P与产量q的函数关系式为, 求产量

4、q 为何值时,利润 L 最大? 动手试试练 1. 日常生活中的饮用水通常是经过净化的,随着水纯洁度的提升,所需净化费用不断增加.将 1 吨水净化到纯洁度为时所需费用单位:元为 .求净化到以下纯洁度时,所需净化费用的瞬时变化率;190%;298练2. 一个距地心距离为 R,质量为M的人造卫星,与地球之间的万有引力F由公式给出,其中M为地球质量,G为常量求F对于r的瞬时变化率.二、总结提升 探学习小结1. 解决优化问题与应用传统知识解应用题的唯一区别是:解题过程中需运用导数求出函数 的最值.2. 在解决导数与数学建模问题时,首先要注意自变量的取值范围,即考虑问题的实际意义 解决优化问题的过程实际上

5、是一个典型的数学建模过程探知识拓展微积分是研究函数的微分、积分以及有关概念和应用的数学分支.微积分中的根本概念是极限、导数、积分等.学习评价探自我评价你完本钱节导学案的情况为.A.很好 B.较好 C. 一般 D.较差探 当堂检测时量:5分钟 总分值:10分计分:1. 以长为10的线段AB为直径为圆,那么它的内接矩形面积的最大值为A . 10 B. 15 C. 25D . 502. 设底为正三角形的直棱柱的体积为V,那么其外表积最小时,底面边长为A . B. C. D.3. 某商品在最近30天的价格与时间天的函数关系是,销售量与时间的函数关系是,那么这种商品的销售多额的最大值为A . 406 B . 506 C . 200 D . 5004. 要做一个底面为长方形的带盖的箱子,其体积为72,其底面两邻边长之比为,那么它的长为,宽为,高为时,可使外表积最小 .5. 做一个无盖的圆柱形水桶,假设需使其体积是,且用料最省,那么圆柱的底面半径为 课后作业1. 某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价每增加10元,就会有一个房间空闲.如果游客居住房间,宾馆每间每天需花费20元的各种维护费用.房间定价多少时,宾馆利润最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论