初中数学几何知识点总结_第1页
初中数学几何知识点总结_第2页
初中数学几何知识点总结_第3页
初中数学几何知识点总结_第4页
初中数学几何知识点总结_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、标准总结示范文本 | Excellent Model Text 资料编码:CYKJ-FW-172编号:_初中数学几何知识点总结编辑:_日期:_单位:_初中数学几何知识点总结用户指南:该总结资料适用于把阶段时间里取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结,明确下一步的工作方向,少走弯路,少犯错误,提高工作效益作用。可通过修改使用,也可以直接沿用本模板进行快速编辑。三角形的知识点1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2、三角形的分类3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。4、高:从三角形的一个顶点向它的对边

2、所在直线作垂线,顶点和垂足间的线段叫做三角形的高。5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。7、高线、中线、角平分线的意义和做法8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。9、三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余推论2三角形的一个外角等于和它不相邻的两个内角和推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半10、三角形的外角:三角形的一条边与另

3、一条边延长线的夹角,叫做三角形的外角。11、三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1、两组对边平行的四边形是平行四边形。2、性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3、判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对

4、边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4、对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1、定义:有一个角是直角的平行四边形叫做矩形2、性质:矩形的四个角都是直角,矩形的对角线相等3、判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4、对称性:矩形是轴对称图形也是中心对称图形。三、菱形的定义、性质及判定1、定义:有一组邻边相等的平行四边形叫做菱形(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两

5、条对角线分成四个全等的直角三角形(4)菱形的面积等于两条对角线长的积的一半2、s菱=争6(n、6分别为对角线长)3、判定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形4、对称性:菱形是轴对称图形也是中心对称图形四、正方形定义、性质及判定1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形2、性质:(1)正方形四个角都是直角,四条边都相等(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形(4)正方形的对角线与边的夹角是45°(5)

6、正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形3、判定:(1)先判定一个四边形是矩形,再判定出有一组邻边相等(2)先判定一个四边形是菱形,再判定出有一个角是直角4、对称性:正方形是轴对称图形也是中心对称图形五、梯形的定义、等腰梯形的性质及判定1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形4、对称性:等腰梯形是轴对称图形六、三角形的中

7、位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。九、多边形1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。2、多边形的内角:多边形相邻两边组成的角叫做它的内角。3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形

8、又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。8、公式与性质多边形内角和公式:n边形的内角和等于(n2)·180°9、多边形外角和定理:(1)n边形外角和等于n·180°(n2)·180°=360°(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°10、多边形对角线的条数:(1)从

9、n边形的一个顶点出发可以引(n3)条对角线,把多边形分词(n2)个三角形(2)n边形共有n(n3)/2条对角线圆知识点、概念总结1、不在同一直线上的三点确定一个圆。2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2圆的两条平行弦所夹的弧相等3、圆是以圆心为对称中心的中心对称图形4、圆是定点的距离等于定长的点的集合5、圆的内部可以看作是圆心的距离小于半径的点的集合6、圆的外部可以看作是圆心的距离大于半径的点的集合7、同

10、圆或等圆的半径相等8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12、直线L和O相交d直线L和O相切d=r直线L和O相离d>r13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线14、切线的性质定理:圆的切线垂直于经过切点的半径15、推论1经过圆心且垂直于切线的直线必经过切点16、推

11、论2经过切点且垂直于切线的直线必经过圆心17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18、圆的外切四边形的两组对边的和相等,外角等于内对角19、如果两个圆相切,那么切点一定在连心线上20、两圆外离d>R+r两圆外切d=R+r两圆相交Rrr)两圆内切d=Rr(R>r)两圆内含dr)21、定理:相交两圆的连心线垂直平分两圆的公共弦22、定理:把圆分成n(n3):(1)依次连结各分点所得的多边形是这个圆的内接正n边形(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆24、正n边形的每个内角都等于(n2)×180°/n25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26、正n边形的面积Sn=pnrn/2p表示正n边形的周长27、正三角形面积3a/4a表示边长28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n2)180°/n=360°化为(n2)(k2)=429、弧长计算公式:L=n兀R/18030、扇形面积公式:S扇形=n兀R2/360=LR/23

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论