过程设备设计课后习题答案_第1页
过程设备设计课后习题答案_第2页
过程设备设计课后习题答案_第3页
过程设备设计课后习题答案_第4页
过程设备设计课后习题答案_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、过程设备设计(第二版)1. 压力容器导言思考题1. 压力容器主要由哪几部分组成?分别起什么作用?答:压力容器由筒体、封头、密封装置、开孔接管、支座、安全附件六大部件组成。筒体的作用:用以储存物料或完成化学反应所需要的主要压力空间。封头的作用:与筒体直接焊在一起,起到构成完整容器压力空间的作用。密封装置的作用:保证承压容器不泄漏。开孔接管的作用:满足工艺要求和检修需要。支座的作用:支承并把压力容器固定在基础上。安全附件的作用:保证压力容器的使用安全和测量、控制工作介质的参数,保证压力容器的使用安全 和工艺过程的正常进行。2. 介质的毒性程度和易燃特性对压力容器的设计、制造、使用和管理有何影响?答

2、:介质毒性程度越高,压力容器爆炸或泄漏所造成的危害愈严重,对材料选用、制造、检验和管理的要求愈高。如Q235-A或Q235-B钢板不得用于制造毒性程度为极度或高度危害介质的压力容器;盛装毒性程度为极度或高度危害介质的容器制造时,碳素钢和低合金钢板应力逐张进行超声检测,整体必须进行焊后热处理,容器上的A、B类焊接接头还应进行100%寸线或超声检测,且液压试验合格后还得进行气密性试验。而制造毒性程度为中度或轻度的容器,其要求要低得多。毒性程度对法兰的选用影响也甚大,主要体现在法兰的公称压力等级上,如内部介质为中度毒性危害,选用的管法兰的公称压力应不小于1.0MPa; 内部介质为高度或极度毒性危害,

3、选用的管法兰的公称压力应不小于1.6MPa,且还应尽量选用带颈对焊法兰等。易燃介质对压力容器的选材、设计、制造和管理等提出了较高的要求。如 Q235-A- F不得用于易燃介质容器;Q235-A不得用于制造液化石油气容器;易燃介质压力容器的所有焊缝(包括角焊缝)均应采用全焊透结构等。3. 压力容器安全技术监察规程在确定压力容器类别时,为什么不仅要根据压力高低,还要视压力与容积的乘积pV大小进行分类?答:因为pV乘积值越大,则容器破裂时爆炸能量愈大,危害性也愈大,对容器的设计、制造、检验、 使用和管理的要求愈高。4. 压力容器安全技术监察规程与GB150的适用范围是否相同?为什么?答:不相同。压力

4、容器安全技术监察规程的适用范围:O最高工作压力n 0.1MPa (不含液体静压力);内直径(非圆形截面指其最大尺寸)>0.15m,且容积A 0.025m3; C3盛装介质为气体、液化气体或最高工作温度高于等于标准沸点的液体。GB150的适用范围:Qi 0.1MPa< p< 35MPa真空度不低于 0.02MPa; C2)按钢材允许的使用温度确 定(最高为700C,最低为-196 C);对介质不限;。弹性失效设计准则和失稳失效设计准则;O 5以 材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;O6最大应力理论;Q7不适用疲劳分析容器。GB150是压力容器标准是设计、

5、制造压力容器产品的依据;压力容器安全技术监察规程是政府对压力容实施安全技术监督和管理的依据,属技术法规范畴。5. GB150 JB4732和JB/T4735三个标准有何不同?它们的适用范围是什么? 答:JB/T4735钢制焊接常压容器与 GB150钢制压力容器属于常规设计标准;JB4732钢制压力容器分析设计标准是分析设计标准。JB/T4735 与 GB150 及 JB4732 没有相互覆盖范围,但GB150与 JB4732 相互覆盖范围较广。GB150的适用范围:设计压力为0.1MPaW p<35MP<a真空度不低于0.02MPa;设计温度为按钢材允许的使用温度确定(最高为700

6、C,最低为-196 C) ; C3对介质不限;。4采用弹性失效设计准则和失稳失效设计准则;。5应力分析方法以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;。6采用最大应力理论;。7不适用疲劳分析容器。JB4732的适用范围:设计压力为0.1MPaW p<100MPa真空度不低于0.02MPa;设计温度为低于以 钢材蠕变控制其设计应力强度的相应温度(最高为475C);对介质不限;。4采用塑性失效设计准则、失稳失效设计准则和疲劳失效设计准则,局部应力用极限分析和安定性分析结果来评定;。5应力分析方法是弹性有限元法、塑性分析、弹性理论和板壳理论公式、实验应力分析;。6采用切应力理

7、论;。7适用疲劳分析容器,有免除条件。JB/T4735的适用范围: 设计压力为-0.02MPaWp<0.1MPa;设计温度为大于-20350c (奥氏体高合金钢制容器和设计温度低于-20 , 但满足低温低应力工况, 且调整后的设计温度高于-20 的容器不受此限制);G不适用于盛装高度毒性或极度危害的介质的容器;。4采用弹性失效设计准则和失稳失效设计准则;Q应力分析方法以材料力学、板壳理论公式为基础,并引入应力增大系数和形状系数;。6采用最大应力理论;。7不适用疲劳分析容器。2. 压力容器应力分析思考题1 . 一壳体成为回转薄壳轴对称问题的条件是什么?答:几何形状、承受载荷、边界支承、材料

8、性质均对旋转轴对称。2 .推导无力矩理论的基本方程时,在微元截取时,能否采用两个相邻的垂直于轴线的横截面代替教材中 与经线垂直、同壳体正交的圆锥面?为什么?答:不能。如果采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面,这两截面与 壳体的两表面相交后得到的两壳体表面间的距离大于实际壳体厚度,不是实际壳体厚度。建立的平衡方程 的内力与这两截面正交,而不是与正交壳体两表面的平面正交,在该截面上存在正应力和剪应力,而不是 只有正应力,使问题复杂化。3 .试分析标准椭圆形封头采用长短轴之比a/b=2的原因。答:a/b=2时,椭圆形封头中的最大压应力和最大拉应力相等,使椭圆形封头

9、在同样壁厚的情况下承受的 内压力最大,因此 GB150称这种椭圆形封头为标准椭圆形封头Rt4 .何谓回转壳的不连续效应?不连续应力有哪些特征,其中3与两个参数的物理意义是什么?答:回转壳的不连续效应:附加力和力矩产生的变形在组合壳连接处附近较大,很快变小,对应的边缘应 力也由较高值很快衰减下来,称为“不连续效应”或“边缘效应”。不连续应力有两个特征:局部性和自限性。x局部性:从边缘内力引起的应力的表达式可见,这些应力是 e+ 的函数随着距连接处距离的增大,很快 衰减至0。不自限性:连续应力是由于毗邻壳体,在连接处的薄膜变形不相等,两壳体连接边缘的变形受到弹性约束 所致,对于用塑性材料制造的壳体

10、,当连接边缘的局部产生塑性变形,弹性约束开始缓解,变形不会连续 发展,不连续应力也自动限制,这种性质称为不连续应力的自限性。4 31123的物理意义:p =曰一=一反映了材料性能和壳体几何尺寸对边缘效应影响范围。该值越大,边缘Rt效应影响范围越小。VRt的物理意义:该值与边缘效应影响范围的大小成正比。反映边缘效应影响范围的大小。5 .单层厚壁圆筒承受内压时,其应力分布有哪些特征?当承受内压很高时,能否仅用增加壁厚来提高承 载能力,为什么?答:应力分布的特征:。1周向应力be及轴向应力bz均为拉应力(正值),径向应力 h为压应力(负值)在数值上有如下规律:内壁周向应力(T 0有最大值,其值为:-

11、maxK21=Pi ,K -1而在外壁处减至最小,2其值为crmin = Pi 2,内外壁b。之差为pi;径向应力内壁处为-pi,随着r增加,径向应力绝对值K 1逐渐减小,在外壁处 h=0。轴向应力为一常量,沿壁厚均匀分布,且为周向应力与径向应力和的一半,即az =仃十仃8。除小外,其他应力沿厚度的不均匀程度与径比K值有关。2K21不能用增加壁厚来提图承载能力。因内壁周向应力d e有最大值,其值为:aax = pi K一,随K值增K -1加,分子和分母值都增加,当径比大到一定程度后,用增加壁厚的方法降低壁中应力的效果不明显。6 .单层厚壁圆筒同时承受内压 pi与外压po用时,能否用压差&

12、;p = pi - Po代入仅受内压或仅受外压的厚 壁圆筒筒壁应力计算式来计算筒壁应力?为什么?答:不能。从Lame公式PR2 P0R2PiP0 R2 喏 1R2 R2R2 - Ri2r222_PiR - P0R0R”R2- P0 R2R2 1Ro2 - R2r2pR; - poR222Ro - RiOCa)厚壁筒内的综合应力M内加热情况* (h)外加熬情况思考题7图可以看出各应力分量的第一项与内压力和外压力成正比,并不是与*P= Pi - po成正比。而径向应 力与周向应力的第二项与“p = pi - Po成正比。因 而不能用Apnpi-p。表示。7 .单层厚壁圆筒在内压与温差同时作用时,其

13、综合应力沿壁厚如何分布?筒壁屈服发生在何处?为什么?答:单层厚壁圆筒在内压与温差同时作用时,其综合应力沿壁厚分布情况题图。内压内加热时,综合 应力的最大值为周向应力,在外壁,为拉伸应力;轴向应力的最大值也在外壁,也是拉伸应力,比周向应力值小;径向应力的最大值在外壁,等于0。内压外加热,综合应力的最大值为周向应力,在内壁,为拉 伸应力;轴向应力的最大值也在内壁,也是拉伸应力,比周向应力值小;径向应力的最大值在内壁,是压 应力。筒壁屈服发生在:内压内加热时,在外壁;内压外加热时,在内壁。是因为在上述两种情况下的应力值最 大。d二 r 一、一 r8 .为什么厚壁圆筒微元体的平衡方程" dr

14、 ,在弹塑性应力分析中同样适用?答:因平衡方程的建立与材料性质无关,只要弹性和弹塑性情况下的其它假定条件一致,建立的平衡方程 完全相同。_:- r fz = Z"9 . 一厚壁圆筒,两端封闭且能可靠地承受轴向力,试问轴向、环向、径向三应力之关系式2对于理想弹塑性材料,在弹性、塑性阶段是否都成立,为什么?答:对于理想弹塑性材料,在弹性、塑性阶段都成立。在弹性阶段成立在教材中已经有推导过程,该式是成立的。由拉美公式可见,成立的原因是轴向、环向、径向三应力随内外压力变化,三个主应力方向始终不变,三个主应力的大小按同一比例变化,由式2 可见,该式成立。对理想弹塑性材料,从弹性段进入塑性段,在

15、保持加载的情况下,三个主应力方向保持不变,三个主应力的大小仍按同一比例变化,符合简单加载条件,根据塑性力学理论,可用全量理论求解,上式仍成立。10 .有两个厚壁圆筒,一个是单层,另一个是多层圆筒,二者径比K和材料相同,试问这两个厚壁圆筒的爆破压力是否相同?为什么?答:从爆破压力计算公式看,理论上相同,但实际情况下一般不相同。爆破压力计算公式中没有考虑圆筒 焊接的焊缝区材料性能下降的影响。单层圆筒在厚壁情况下,有较深的轴向焊缝和环向焊缝,这两焊缝的 焊接热影响区的材料性能变劣,不易保证与母材一致,使承载能力下降。而多层圆筒,不管是采用层板包 扎、还是绕板、绕带、热套等多层圆筒没有轴向深焊缝,而轴

16、向深焊缝承受的是最大的周向应力,圆筒强 度比单层有轴向深焊缝的圆筒要高,实际爆破时比单层圆筒的爆破压力要高。11 .预应力法提高厚壁圆筒屈服承载能力的基本原理是什么?答:使圆筒内层材料在承受工作载荷前,预先受到压缩预应力作用,而外层材料处于拉伸状态。当圆筒承 受工作压力时,筒壁内的应力分布按拉美公式确定的弹性应力和残余应力叠加而成。内壁处的总应力有所 下降,外壁处的总应力有所上升,均化沿筒壁厚度方向的应力分布。从而提高圆筒的初始屈服压力,更好 地利用材料。12 .承受横向均布载荷的圆形薄板,其力学特征是什么?其承载能力低于薄壁壳体的承载能力的原因是什么?答:承受横向均布载荷的圆形薄板,其力学特

17、征是:。1承受垂直于薄板中面的轴对称载荷;。2板弯曲时其中面保持中性;。3变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线上各点间的距离不变;。4平行于中面的各层材料互不挤压。其承载能力低于薄壁壳体的承载能力的原因是:薄板内的应力分布是线性的弯曲应力,最大应力出现有板面,其值与p(R/tf成正比;而薄壁壳体内的应力分布是均匀分布,其值与pR/t城正比。同样的(Rt)情况下,按薄板和薄壳的定义,(R/t 2 » (R/t),而薄板承受的压力 p就远小于薄壳承受的压力 p 了。13 .试比较承受均布载荷作用的圆形薄板,在周边简支和固支情况下的最大弯曲应力和挠度的大小和

18、位置。f w maxpR4 64D答:O周边固支情况下的最大弯曲应力和挠度的大小为:_ 3pR2"" max ' '24t国周边简支情况下的最大弯曲应力和挠度的大小为:max3 3 口 pR28t2swmaxpR4 5 J64D 11应力分布:周边简支的最大应力在板中心;周边固支的最大应力在板周边。两者的最大挠度位置均在圆形薄板的中心。0周边简支与周边固支的最大应力比值> 1.65sWL maxfwmax周边简支与周边固支的最大挠度比值5 -£35 0.377 - - = 4.081110.3(b)圆平板的弯曲应力分布(板下表面)(G周边固支

19、 (b)周边简支其结果绘于下图14 .试述承受均布外压的回转壳破坏的形式,并与承受均布内压的回转壳相比有何异同?答:承受均布外压的回转壳的破坏形式主要是失稳,当壳体壁厚较大时也有可能出现强度失效;承受均布 内压的回转壳的破坏形式主要是强度失效,某些回转壳体,如椭圆形壳体和碟形壳体,在其深度较小,出 现在赤道上有较大压应力时,也会出现失稳失效。15 .试述有哪些因素影响承受均布外压圆柱壳的临界压力?提高圆柱壳弹性失稳的临界压力,采用高强度 材料是否正确,为什么?答:影响承受均布外压圆柱壳的临界压力的因素有:壳体材料的弹性模量与泊松比、长度、直径、壁厚、 圆柱壳的不圆度、局部区域的折皱、鼓胀或凹陷

20、。提高圆柱壳弹性失稳的临界压力,采用高强度材料不正确,因为高强度材料的弹性模量与低强度材料的弹 性模量相差较小,而价格相差往往较大,从经济角度不合适。但高强度材料的弹性模量比低强度材料的弹 性模量还量要高一些,不计成本的话,是可以提高圆柱壳弹性失稳的临界压力的。16 .求解内压壳体与接管连接处的局部应力有哪几种方法?答:有:应力集中系数法、数值解法、实验测试法、经验公式法。17 .圆柱壳除受到压力作用外,还有哪些从附件传递过来的外加载荷?答:还有通过接管或附件传递过来的局部载荷,如设备自重、物料的重量、管道及附件的重量、支座的约 束反力、温度变化引起的载荷等。18 .组合载荷作用下,壳体上局部

21、应力的求解的基本思路是什么?试举例说明。答:组合载荷作用下,壳体上局部应力的求解的基本思路是:在弹性变形的前提下,壳体上局部应力的总应力为组合载荷的各分载荷引起的各应力分量的分别叠加,得到总应力分量。如同时承受内压和温度变化 的厚壁圆筒内的综合应力计算。习题1.试应用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p,壳体中面半径为 R,壳体厚度为t )。若壳体材料由20R (仃b =400MPa,CFs = 245MPa )改为16MnRlb=510Mpa,Qs=345Mpa)时,圆柱壳中的应力如何变化? 为什么?解:0求解圆柱壳中的应力:里RiR2应力分量表示的微体和区域平衡方程

22、式:F - -2二 0 rpzdr = 2 rk二 tsin圆筒壳体:Ri=°°, R2=R, pz=-p , rk=R ()=兀/2pR=7PR2 sinPR 2t壳体材料由20R改为16MnR圆柱壳中的应力不变化。因为无力矩理论是力学上的静定问题,其基本方程是平衡方程,而且仅通过求解平衡方程就能得到应力解,不受材料性能常数的影响,所以圆柱壳中的应力分布和大小不受材料变化的影响。2.对一标准椭圆形封头(如图所示)进行应力测试。该封头中面处的长轴D=1000mm厚度t=10mm 测得E点(x=0)处的周向应力为 50MPa此时,压力表A指示数为1MPa压力表B的指示数为2M

23、Pq试问哪一个压力表已失灵,为什么?解:O根据标准椭圆形封头的应力计算式计算E的内压力:标准椭圆形封头的长轴与短轴半径之比为2,即a/b=2 , a=D/2=500mm在x=0处的应力式为:,从上面计算结果可见,容器内压力与压力表2btiP2-a2 10 502 500= 1MPaA的一致,压力表 B已失灵。3.有一球罐(如图所示),其内径为20m (可视为中面直径),厚度为20mm内贮有液氨,球罐上部尚有3m的气态氨。设气态氨的压力p=0.4MPa,液氨密度为640kg/m3,球罐沿平行圆 A-A支承,其对应中心角为120° ,试确定该球壳中的薄膜应力。解:0球壳的气态氨部分壳体内

24、应力分布:R=R2=R pz=-ppR二,TphpR2 sin2tpR 0.4 10000 仃小=仃目=2t 2 20二 100MPa支承以上部分,任一。角处的应力:R=R=R, pz=-p+()0-cos () , r=Rsin (), dr=Rcos()d()102 -7251sin 0 = = cos 0 = 0.71010g g R (cos习题3附图由区域平衡方程和拉普拉斯方程:2r2nRasin © =2n Ip cos 0 - cos R Dgbdr一3 一 = 2(p+R%cosa If rdr -2nR Pg J#cos2 sin d-二R2 p R :?gcos

25、0 sin2sin2 02 二R3 9 cos33- cos3 0R p R Pgcos 0 sin2 4 sin2 0R2 : g cos3 4 cos3 02tsin23tsin2Rtsi/J 散n*-sin2 0 R : g cos 0 sin2 -sin2 0- cos3 -cos3 023pz Rtp- cos 0 -cos R : gR Q =R -仃p cos 0 -cos Rg=J R 一t禽%n2 L2 R )十 R Pg 曾(sin2 Jin飞空(cos3 - cos3 %py . 2 .- 2 - cos*o2 j (sin-sin 6)十 Rflgtsin e 2sin

26、2 4 sin2 01 cos i cos3 010 2 6.2 106sin2-0.510.02 sin 10 640 9.810.35 sin2 -0.511 cos3 -0.73=-00- 221974.4 sin2 -0.5120928 cos3 - 0.343 :'sin5222.2 sin2 -0.512.1 cos3 - 0.343 /sin- 22.2sin22.1co<512.042MPasin22R p i 2 A2 J (sin -sin tsin * 2p - cos 0 - cos R : g R -sin2 - sin2 0 L cos3 -cos3

27、035 I23 .= 221.974 -31.392 cos -22.2sin2.1 cos -12.042)MPasin2支承以下部分,任一 。角处的应力(。120° )R=R2=R, pz=-p+ pg R (cos()0-cos(), r=Rsin (), dr=Rcos()d()r=2二 p R gcos 0-r0V = 2n Jr Ip + (cost。一 cos RPg bdr + 3 nR3 Pg g nh2 (3R h )Pgrdr - 2 R3 : g cos sin d g 4R3 - h2 3R - h 1032,= R p R gcos 0 sin -sin

28、0- R g cos -cos 03U 4R3 h2 3R h 1V = 2 R r tsin2 "2tsin2R p R gcos 0 sin2 - sin2 0 R2 g cos - cos1 03tsin2tsin涧快in2 J" ,0 HR%""0sin2 -sin2 01 cos - cos 00306tsin2 I4R2 h2PzR为TCTe =p 7 cos 0 - cos R gp cos 0 -cos R g =R 一cos2 ,(sin2 -sin2 包)+ RPg I-tsin2* 2-sin2 - sin2 01 cos3 - c

29、os3 036tsin2 IL4R2h2-RR Pf - 2小.2 小 jD占Cos0 2 J(sin 寸 sin % )+ R电 itsin2® 21 222 .1 .3 .3 .sin 一 sin o cos 一 cos o3篇4R2h2R-6tsig2*!4R2-h0.2 106 sin2 -0.51 0.02 sin210 640 9.81; 10.35 sin2 - 0.51 L 1cos_0.73 1 -23sin2=00-221974.4 sin20.51 20928 cos30.343 39313.248)sin2-2 22.2 sin2 -0.512.1coJ -

30、0.3433.9;sin5 I235 22.2 sin22.1 cos38.141 MPasin2p cos 0 -cos R gtRJ fein2 4-sin2 包)+ RAg I cos0 (sin2 4sin2% )+1 (cod 4 cod % Jtsin2M2123jj5.23、19.656624= 200 31.392 0.7 - cos -222.2 sin - 0.512.1 cos -0.3432sinsin= 200 31.392 0.7 cos -5 22.2 sin22.1 cod -8.141sin= 221.974-31.392 cos -22.2 sin22.1

31、cos38.141 MPasin24.有一锥形底的圆筒形密闭容器,如图所示,试用无力矩理论求出 锥形底壳中的最大薄膜应力b e与b I的值及相应位置。已知圆筒形容器中面半径R,厚度t ;锥形底的半锥角a ,厚度t ,内装有密度为p 的液体,液面高度为 H,液面上承受气体压力 pc。解:圆锥壳体:R=°°, R=r/cos a ( a 半锥顶角),pz7P c+p g(H+x),()=兀/2- a, r=R xtgaF = R2 pcH :g x R23r2 Rr e g = 2二 rtcos1199R2 pc H g x R2 r2 Rr ;g:二32rtcos0. x x

32、x2tg2aR (Pc + H Pg )+ x R - xRtga +'32 R - xtg: tcos:二三=_PzR1R2t_PcH xGQ =d1dx tcos:令:。=0dxtcos:IPg R - xtg- - lpc,i H x f g tg ;;,1x =2tg: itR - Htg 二-Pctgd2g dx22gtg二0 tcos:在x处djF最大他仃机最大值在锥顶其值为*-<max2 tR HPcii v>Pg > R + HtgpgJJ八Ct十Pctgg2tcos_::5.试用圆柱壳有力矩理论,求解列管式换热器管子与管板连接边缘处(如图所示)管子的

33、不连续应力表达式(管板刚度很大,管子两端是开口的,不承受轴向拉力)。设管内压力为p,管外压力为零,管子中面半径为 r,厚度为解:O管板的转角与位移1P = 1Q0M0C2内压作用下管子的挠度和转角内压引起的周向应变为:2 R - w - 2 R2 RPR Etw;PR2Et 转角:边缘力和边缘边矩作用下圆柱壳的挠度和转角0变形协调条件求解边缘力和边缘边矩pR2EtMo边缘内力表达式NxNQxMoW2M0W2Qo2D2 2D1 Mo DW2MoMo2 3D2 2DpR2Et4P4R3D'pe4EtQoW2-Q02 3D2 2DQ0 2M0 2Mo+2 2D二 Q0 = 03D誓sin x

34、 cos x - - pRe-x sin x cos x-2R D pe x sin x - cos xMxEt金曲excosxEt边缘内力引起的应力表达式Nx 12Mxt324 2R2D p xeEt4sin x - cos x z出 12Mt3叫-xtsin x cos x -4Et3e一 & sinPx- cosxj6Qxt3t22-z<424P 3R2D p t2Et4-4 ae cosxC8综合应力表达式xPR Nx=r ±2t tPR N._12Mx pR 24 2R2D p x . 3z4 e- sin x cos xzt3 2t Et412M 1 t3s

35、in x cos-x -24 2RDEt3e*sinPx - coSxJz JJL224P3R2Dp t26.两根几何尺寸相同,材料不同的钢管对接焊如图所示。管道的操作压力为p,操作温度为0,环境温度为t c,而材料的弹性模量 E相等,线膨胀系数分别a i和a 2,管道半径为r ,厚度为t,试求得焊接处的不连续应力(不计焊缝Et4习题6附图2e一函 coSx余高)。解:0内压和温差作用下管子 1的挠度和转角内压引起的周向应变为:p 2 二 r-=wp -2 r 1 pr pr2t温差引起的周向应变为:.t2二 r -w1-2 r2 rw1一 二L to -tc = i t rw1t = -r

36、1t转角:C2内压和温差作用下管子内压引起的周向应变为:p,:在 Wi2S 2 i t 2Et2的挠度和转角2二 r-w2P -2:r2 r一也2tw2P2汉2-2Et温差引起的周向应变为:2 冗(r-wpt)-2nrwptt0 - tc =1 2Lt w2A - - r: 2lt转角:边缘力和边缘边矩作用下圆柱壳2 pr2Et2-J - r: 2Lt2P t -01的挠度和转角-Mo2 2DQoW12 3DMo 1Mo.Q。2 2D边缘力和边缘边矩作用下圆柱壳2的挠度和转角MoW22 2DMoQoW22 3D2Mo7D-Mo-Qo2 2D变形协调条件QoP Lt十+Mo 1Qo MoC6求解

37、边缘力和边缘边矩2 pr2Et2 2DMo2 pr2 3D2Et2 2DMo2 3D1 一 1 一 1 -1 一一万0 2/ fm° rv oMo =0Qo =r 3D to -tc 2边缘内力表达式NxN=Ete x to - tc 12 cos x 2=r 2D e x t0 - tc1 - 2 sin xMxQxr 3 D e - x t0 - tc1 - 2 cos x - sin x边缘内力引起的应力表达式Nx12Mt3x-z12z r - 2 Dex t0 - tc1f 2 sin xt 3aeNt12M飞t3e x t0tc 1-2 i Ecos x 一12zt3r 2

38、D sin xCTz6Qxt2t36rt2C9综合应力表达式7.t33D e x t0 - tc12 cos x - sin x12M2tt3x-zpr 12z2 x 13- r D et0 - tc1 - 2 sin x2tt3二 Prt12Mt3z =史 e 一x t° - tc1 - 二 2tcos x -12zt3r 2D sin xZt2一单层厚壁圆筒,承受内压力筒外直径 D)=980mm E=2X 105MPa解:周向应变物理方程6rt343De xt0-tc1-2 cos x - sin xpi=36MPa时,测得(用千分表)筒体外表面的径向位移w)=0.365mm,圆

39、=0.3 。试求圆筒内外壁面应力值。r w d? - rd【 ww = r -1+ CT z= -r_bg_R(<Tr + CTz仅承受内压时的 Lame公式rR;r 二 RTRRK2 1仃6=pRi2喏-R2RR;R2R2R2K2 -1PiK2-1在外壁面处的位移量及内径:Pi RoWr 氏22 _ J = W0E K2 1K=1 EW:2-136 4902 0.352 100.365=1.188内壁面处的应力值:R 一 R0Ri K490412.538mm1.188r 二 一 Pi-36MPad21.1882 1 _Pi1 K2 = 362= 211.036MPaK2 11.1882

40、 -1R36丁2=87.518MPaK2 11.1882 -1外壁面处的应力值:8.有一超高压管道, r =02 PiKlK I.-Pi-Z -2K -12 361.1882 -1361.1882 -1= 175.036MPa= 87.518MPa其外直径为78mm内直径为34mm承受内压力300MPa操作温度下材料的(Tb=1000MPa bs=900MPa此管道经自增强处理,试求出最佳自增强处理压力。解:最佳自增强处理压力应该对应经自增强处理后的管道,在题给工作和结构条件下,其最大应力取最小Rc的周向应力为最大拉伸应力,值时对应的塑性区半径 Rc情况下的自增强处理压力。对应该塑性区半径其值

41、应为经自增强处理后的残余应力与内压力共同作用下的周向应力之和:Ri2Ro - Ri2Rc 2Ro J、2令其一阶导数等于0,求其驻点R2R2 - R22 Pi Ri2R02解得:R=21.015mmi根据残余应力和拉美公式可知,该值对应周向应力取最大值时的塑性区半径。由自增强内压pi与所对应塑性区与弹性区交界半径Rc的关系,最佳自增强处理压力为:+ 2lnRc =589.083MPa R J9 .承受横向均布载荷的圆平板,当其厚度为一定时,试证明板承受的总载荷为一与半径无关的定值。证明:O周边固支情况下的最大弯曲应力为3pR2 3 p二R23PCT =-max2224t4 二t4 t周边简支情

42、况下的最大弯曲应力为:max3 3 口 pR2 = 3 3 p R2 = 3 3 口 P8t2 一8 二 t2一8 二 t210 .有一周边固支的圆板,半径R=500mm板厚=38mm板面上承受横向均布载荷p=3MPa试求板的最大挠度和应力(取板材的E=2X 105MPa科=0.3 )解:板的最大挠度:Et3121-;22 105 38312 1 -0.32= 1.005 10板的最大应力:f w maxPR464D3 50049 = 2.915mm64 1.005 109max3pR24t23 3 50024 382=389.543MPa11 .上题中的圆平板周边改为简支,试计算其最大挠度和

43、应力,并将计算结果与上题作一分析比较。 解:板的最大挠度:spR4 5 - 5 0.3w:ax=-p-2.915-4.077 2.915 - 11.884mm64D 111 0.3板的最大应力:、-max3 3pR28t223 3 0.3 3 50023 0.32389.543 = 1.65 389.543 = 642.746MPa8 382简支时的最大挠度是固支时的4.077倍;简支时的最大应力是固支时的1.65倍。12 . 一穿流式泡沫塔其内径为1500mm塔板上最大液层为800mm(液体密度为p =1.5 x 103kg/m3),塔板厚度为6mm材料为低碳钢(E=2X105MPa心=0.

44、3)。周边支承可视为简支,试求塔板中心处的挠度;若挠度必须控制在3mml下,试问塔板的厚度应增加多少?解:周边简支圆平板中心挠度Et353 32 10 622121 - 112 10.3= 39.56 105p = hg = 0.8 1500 9.81 =11772Pa = 0.012MPaswmax0.012 7504 5 0.3 5 "-zti = 61.14mm64 39.56 10 1 0.3挠度控制在3mml下需要的塔板厚度塔板刚度需增加的倍数6114: 20.383需要的塔板刚度 D = 20.38 X 39.56 父 105 = 806.2328 105121 - 12

45、 D 312 1 0.32806.2328 1052 105=16.4mm需增加10.4mm以上的厚度。13 .三个几何尺寸相同的承受周向外压的短圆筒,其材料分别为碳素钢(bs=220MPa E=2X105MPa 科=0.3)、铝合金(bs=110MPa E=0.7X105MPa 科=0.3)和铜(bs=100MPa E=1.1X105MPa 科=0.31),试问哪一个圆筒的临界压力最大,为什么?答:碳素钢的大。从短圆筒的临界压力计算式2.59Et2LD0D0t可见,临界压力的大小,在几何尺寸相同的情况下,其值与弹性模量成正比,这三种材料中碳素钢的 大,因此,碳素钢的临界压力最大。14 .两个

46、直径、厚度和材质相同的圆筒, 承受相同的周向均布外压,其中一个为长圆筒,另一个为短圆筒, 试问它们的临界压力是否相同,为什么?在失稳前,圆筒中周向压应力是否相同,为什么?随着所承受的 周向均布外压力不断增加,两个圆筒先后失稳时,圆筒中的周向压应力是否相同,为什么?答:。临界压力不相同。长圆筒的临界压力小,短圆筒的临界压力大。因为长圆筒不能受到圆筒两端部的支承,容易失稳;而短圆筒的两端对筒体有较好的支承作用,使圆筒更不易失稳。C2在失稳前,圆筒中周向压应力相同。因为在失稳前圆筒保持稳定状态,几何形状仍保持为圆柱形,壳体内的压应力计算与承受内压的圆筒计算拉应力相同方法。其应力计算式中无长度尺寸,在

47、直径、厚度、材质相同时,其应力值相同。圆筒中的周向压应力不相同。直径、厚度和材质相同的圆筒压力小时,其壳体内的压应力小。长圆筒的临界压力比短圆筒时的小,在失稳时,长圆筒壳内的压应力比短圆筒壳内的压应力小。15 .承受均布周向外压力的圆筒,只要设置加强圈均可提高其临界压力。对否,为什么?且采用的加强圈愈多,壳壁所需厚度就愈薄,故经济上愈合理。对否,为什么?答:O承受均布周向外压力的圆筒,只要设置加强圈均可提高其临界压力,对。只要设置加强圈均可提高圆筒的刚度,刚度提高就可提高其临界压力。国采用的加强圈愈多,壳壁所需厚度就愈薄,故经济上愈合理,不对。采用的加强圈愈多,壳壁所需厚度就愈薄,是对的。但加

48、强圈多到一定程度后,圆筒壁厚下降较少,并且考虑腐蚀、制造、安装、使用、维修等要求,圆筒需要必要的厚度,加强圈增加的费用比圆筒的费用减少要大,经济上不合理。16 .有一圆筒,其内径为 1000mm厚度为10mm长度为20m,材料为20R ( b=400MPa bs=245MPa E=2X105MPa科=0.3)。0在承受周向外压力时,求其临界压力pcr。C2在承受内压力时,求其爆破压力pb,并比较其结果。解:O临界压力pcrD0 =1000 2 10 = 1020mmLcr =1.17D01 也=1.17父1020M, t1020 12052.75mm 12m 20m10属长短圆筒,其临界压力为

49、V2.2E;2.2 2 105D°310 ' = 0.415MPa<1020;承受内压力时,求其爆破压力pb, ( Faupel公式)a2-2 M 245In K = r=- M2-2451020ln = 7.773MPa400100018.747 倍。承受内压时的爆破压力远高于承受外压时的临界压力,高出17 .题16中的圆筒,其长度改为 2m,再进行上题中的。1、的计算,并与上题结果进行综合比较。解:O临界压力Per,属短圆筒,其临界压力为22.59Et2Per 一2.59 2 105 1022.514MPa10202000 10201020sle aspb = f=

50、 ; 2 一73 l 仃b JInK =2 2452245、1020m2- ix ln =7.773MPa<400 J1000国承受内压力时,求其爆破压力pb, ( Faupel公式)3.092倍,但比长圆筒时的倍数小了很多。承受内压时的爆破压力高于承受外压时的临界压力,高出3.压力容器材料及环境和时间对其性能的影响思考题1 .压力容器用钢有哪些基本要求?答:有较高的强度,良好的塑性、韧性、制造性能和与介质相容性。2 .影响压力容器钢材性能的环境因素主要有哪些?答:主要有温度高低、载荷波动、介质性质、加载速率等。3 .为什么要控制压力容器用钢中的硫、磷含量?答:因为硫能促进非金属夹杂物的

51、形成,使塑性和韧性降低。磷能提高钢的强度,但会增加钢的脆性,特别是低温脆性。将硫和磷等有害元素含量控制在很低水平,即大大提高钢材的纯净度,可提高钢材的韧性、抗中子辐照脆化能力,改善抗应变时效性能、抗回火脆性性能和耐腐蚀性能。4 .为什么说材料性能劣化引起的失效往往具有突发性?工程上可采取哪些措施来预防这种失效?答:材料性能劣化主要表现是材料脆性增加,韧性下降,如材料的低温脆化;高温蠕变的断裂呈脆性、珠光体球化、石墨化、回火脆化、氢腐蚀和氢脆;中子辐照引起材料辐照脆化。外观检查和无损检测不能有效地发现脆化,在断裂前不能被及时发现,出现事故前无任何征兆,具有突发性。工程上可采取预防这种失效的措施有:对低温脆化选择低温用钢、高温蠕变断裂在设计时按蠕变失效设计准则进行设计、珠光体球化采用热处理方法恢复性能、石墨化采用在钢中加入与碳结合能力强的合金元素 方法、回火脆性采用严格控制微量杂质元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论