我国商业银行实施巴塞尔新资本协议的问题分析及建议_第1页
我国商业银行实施巴塞尔新资本协议的问题分析及建议_第2页
我国商业银行实施巴塞尔新资本协议的问题分析及建议_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、摘要:本文结合我国银行的资本管理实际及巴塞尔新资本协议的要求,对我 国商业银行实施新资本协议存在的问题从数据基础、管理工具、文化等方面 进行了详细分析,指出存在的各种差距,并结合这些分析及大多数商业银行 的实际,提出了积极筹备的几项具体建议。关键词: 商业银行,新资本协议,资本管理一、我国商业银行实施新资本协议的差距分析新巴塞尔协议是以风险计量技术为核心, 以数据基础、 IT 系统、计量技 术、治理结构、政策体系和流程控制为基本元素的全面风险管理框架,具有 内在的复杂性。实施新协议必须对银行从数据、技术、管理、文化等方面进 行细致的差距分析、影响评估,然后系统地进行各项准备,才能有效地推进 实

2、施的进程。根据最近对欧洲银行的调查结果,他们对最大差距的看法是: 60%认为 在于数据、 50%认为在于文化、 40%认为在于风险计量工具和方法,其他少数 的还有如人力资源、 n 系统、管理体制、文档化水平等方面。下面就我国商 业银行这几方面的差距进行分析。新巴塞尔协议的核心是三大支柱。其中第二、第三支柱更多地表现在外 在管理要求上,而对银行提出严格技术要求的主要是第一支柱。所以,我国 商业银行对第一支柱的差距是本文分析重点。( 一 ) 数据基础差距分析数据是新资本协议提供的资本计量方法的基础,也是差距最大的方面。 汇丰、法国储蓄银行等的实践都证明,数据是实施新协议的重中之重。欧洲 各银行在实

3、施新资本协议过程中大约 70%的时间和金钱都花费在数据上。标 普、穆迪等外部评级公司为建立自己的 CompuStat、RiskCalc 等评级系统都 收集了上万家公司几十年的数据。新资本协议虽然没有这么高的要求,但数 据对其 IRB 评级结果的影响很大。 第一支柱为三大风险都给出了不同的计量 方法,不同方法对银行的数据要求不同。根据银监会实施新资本协议指导 意见提出的以 IRB 法为目标的建议,我们这里主要分析对内部评级法的最 低标准的差距。其他风险类似。1. 数据定义不清晰数据定义对数据质量的影响非常突出。 因为 IRB 法要求对银行的各个数 据库进行一体化,所以各个数据库的衔接及同一数据库

4、数据的统一程序处理 都要求对数据定义必须明确统一。这样用于估计风险要素的数据,如风险暴 露数量,及生成数据,如内部评级结果才具有可比性。一旦定义不清晰,就难以保证数据的准确性和可靠性,进而计量模型也就失去了基础。比如新资 本协议对中小企业的定义是销售额低于 5000 万欧元的企业,总额小于 100 万欧元的企业借款划归零售等,和我国常用定义有所不同。再如金融市场方 面的数据,比如价格,必须有一个明确的比如单位、币种等的统一要求。但 是各种债券的报价方式不一样,国债使用净价,而企业债使用全价,直接把 它们引入数据库显然是不行的。其他的比如新旧会计准则的差异, 或者内部会计科目的调整等都可能引 起

5、字段意义的变化,都必须进行统一化。2. 数据的准确性、可靠性及完整性问题这是确保数据质量的核心指标。 但是由于过去对于银行管理的要求的不 同,不同时期的数据结构、数据定义等可能是不同的。要达到准确、可靠是 很难的。这也是目前数据存在的最大问题。很多数据都是基层业务人员输入的,或者是由客户提供的。这里面可能 出现操作上的失误造成的错误,也有可能数据本身的问题。比如根据西方银 行的实践证明,除非采取严厉的措施,否则数据输入的失误率很难降到 5% 以下。再如企业财务报表,可能很多是没有经过审计的,虽然准确的记录下 来,但其中可靠性如何就很难把握。一些宏观数据的获得也存在不同来源结 果不同的问题。另一

6、方面,这里的可靠性具有对计量模型可靠的意义。我们的计量模型 是用来评价现在的客户或贷款的, 但是现在的外界条件, 比如宏观经济状况、 法律完善程度等,和几年前可能有很大的差别,进而使得客户的信用模式发 生很大的变化,那么过去的数据对现在的风险模型就不一定可靠。从完整方面讲,由于我国银行内部评级比较落后,所以数据积累相对残 缺。IRB法需要的数据主要有四类:一是反映客户自身经营状况的财务信息, 主要有三大财务报表等,对此类财务信息许多客户未能及时提供。二是客户 基本面、银行账户纪录在内的非财务信息,主要是客户基本面信息、合同信 息、账务信息、担保信息、清偿信息以及突发事件等。这类数据往往标准及

7、格式不统一,且残缺不全。三是与客户内部评级相关的宏观信息,主要包括 国家风险、行业风险、区域风险和交叉风险等方面宏观风险数据。此类数据 涉及面广,来源渠道交错复杂,且存在一定的滞后性。目前,我国银行对此 类数据的收集投入明显不足。四是评级历史信息。比如目前大多采用的 Credit Metrics 等模型都需要对企业的信用转移情况进行估计,而目前国内 银行很少连续的对客户和贷款进行内部或外部评级,没有相关的评级记录, 评级所需的材料大多也是空白。 目前我国部分商业银行虽然已经有对于客户 的评级,但是并没有债项评级,自然缺乏相应的记录,也就无法估计LGD、EAD等参数。从覆盖范围看,我国商业银行的

8、数据覆盖面较窄。我国商业银行因原来 属于不同的部门,客户种类比较单一。但是随着改革的不断深入,我国商业 银行必须扩展业务范围,这种业务的扩展对应的是客户类型和地域的变化, 用原来的客户数据建立模型处理现在和未来的客户显然是不行的。在押品管 理方面,目前也存在押品的价值评估报告时间上的覆盖面不够的问题,比如 评估频率达不到新巴塞尔协议要求等。以上主要是信用风险方面,市场风险和操作风险数据也存在类似问题, 尤其操作风险数据残缺表现更为严重,特别是对于大量的高频率低损失事 件,很难获得相关的记录。3. 数据的数量问题数据的数量是模型可靠性的影响因素之一。巴塞尔新资本协议的总体要 求是最好要有一个经济

9、周期的历史数据。具体来说,估计违约率 (PD) 需要至 少5年的数据;估计违约损失率(LGD)和违约风险暴露(EAD)对于主权、公司 和银行风险暴露需要 7年的数据,对于零售风险暴露需要 5年数据。当然, 这些数据必须是满足准确性、可靠性及全面性的数据。目前简单地从数据时 间长短上来说能达到上面的要求,但其中的质量问题难以保证,或者说满足 要求的数据是否能达到以上年限就很难说。( 二) 风险管理工具的差距分析这里的风险管理工具既包括模型工具,也包括 IT 系统等硬件工具。它们相辅相成,才能共同完成新资本协议要求的风险管理目标。1. 模型工具问题对新资本协议来说,最为核心的模型就是IRB内部评级

10、模型,主要围绕 PD LGD和EAD这三个指标对应的模型展开。它们对于四种不同的风险暴露, 即主权、银行、公司和零售,各有不同。必须根据各类风险暴露的特点去分 别建立相应的信用模型。主权风险在对外贷款决策中的权重一般要高于公司风险, 所以主权风险 评估具有重要的意义。对于主权风险可以借鉴外部评级,比如穆迪、标普等 的评级。公司风险暴露的内部评级模型就是根据公司所在的国家、行业、区 域等系统性宏观风险因素和其财务状况、 信贷记录及其他基本面信息对公司 的违约特征进行估计的模型。银行风险暴露涵盖了银行、证券公司、不满足 风险权重为 0 条件的多边开发银行等金融机构的风险暴露,它大多源于资本 市场的

11、交易。它的内部及评级思路基本和公司业务一致,不同在于对应的资 产一般不是贷款,同时,银行也不同于一般的公司,是有特殊经营指标的公 司,比如资本充足率等。零售风险暴露比较复杂,因为其业务涵盖的范围较 大,各业务之间的差别也比较大,需要针对不同的业务开发不同的模型。并 且新资本协议中对零售风险直接规定使用高级 IRB法。信用风险度量的方法可以归为盯住信用等级变化对贷款理论市值影响 的盯住市场模型(MTM以及不考虑信用等级的变化、只考虑违约概率的违约 模型(DM)两类。MTM模型在界定信用风险的范畴时,既考虑了信用等级的变 化,也考虑了违约,并由此来计算贷款价值的损失和收益以及贷款的信用风 险。常用

12、的有KMV Credit Metrics 等模型。而DM模型偏重于预测违约损 失,只考虑两种状态:违约和不违约,不考虑信用等级的变化。常用的有 CreditRisk+、死亡率模型等。这些模型应用都需要一定的条件。MTM类模型 不仅需要股票市场发达、有效,股票的交易价格能够反映企业资产的市场价 值情况,还要有相当长时间的股价变动历史数据和完善的内、外部信用评级 体系和积累的大量历史数据。 我国的股票市场不管是有效性还是上市公司数 目都非常有限,应用起来可行性受到制约。而我国的资信评估业虽有近 10 年的发展,但是国际认可的很少,并且评估方法、数据、自身信用等方面还 存在很大问题,企业的评级积累更

13、少,所以这类模型的应用难度很大。DM类模型一般需要大规模的包括各等级的债权工具的历史观测值样本。 而这对中国银行业也是很大的困难。 一方面是过去对违约的数据积累不够重 视,本身存在数据残缺问题。另一方面是 1999 年四大资产管理公司的成立, 剥离了四大国有银行的大量不良资产,进一步导致数据积累的不连续性。其 他股份制银行的数据积累相对更弱,且往往具有经营范围的局限性,这为银 行利用DM类模型也带来难以逾越的困难。但是这方面相对具有一定的操作 性,影响的只是精度问题。所以目前试点的各家银行主要是采用该类方法, 但结果的精度需要不断提高。根据公开披露的资料,东方金诚国际信用评估 公司于 2008

14、年利用东方资产管理公司拥有的中国银行、中国建设银行和中 国工商银行等的违约数据,基于 Beta 分布建立起我国第一个公布的信用模 型一Loss Metrics模型。其效果如何有待时间和实践的检验。从我国商业银行的实际来说, 基本上没有完善的关于以上几方面的信用 模型。相对来说可能零售的信用模型易于开发,在某些具体方面比较完善一 些。比如信用卡,可以根据申请人的自然状态、经济状况、信用记录、发展 前景等方面进行量化综合评价,得出量化的指标。但这套评分系统未能和新 资本协议IRB法要求的PD等三个风险特征指标建立联系,不能直接转移至 内部评级体系。其他几方面一般还是采用打分法。与新巴塞尔协议的要求

15、相 比有着很大的差距,不能充分发挥其在揭示和控制信用风险方面的作用。这 主要表现在风险等级的划分过于简单、历史数据积累不足、信用评级方法偏 重于定性分析,缺乏精确、科学的计量模型、信用评级标准不统一,评级结 果的运用十分有限等方面。同时这些模型大多是针对债务人的,针对债项的 评级基本上还是空白,离新资本协议的内部评级法还有很大的差距。这方面 建行、工行起步较早,相对完善一些。除了信用风险外,新资本协议还涉及银行操作风险和市场风险问题。对 于这两类风险,内部模型主要是对这两类风险进行直接的估计。市场风险常 用的就是VaR模型。当然,要建立我国商业银行的 VaR模型,也必须具备获 得我国商业银行V

16、aR模型参数的能力。这方面基础相对较好,但也存在数据 问题。对于操作风险,要求使用高级计量法,据目前操作风险的数据来说,很难达到新巴塞尔协议的要求除此之外,新巴塞尔协议还涉及相应资本配置和绩效评估问题,也没有 给出现成的理论公式, 必须根据我国商业银行自身的特点, 比如事业部制等, 自行开发。2. 系统工具问题由于新资本协议的复杂性,没有完善的 IT 系统几乎是不可能完成的, 并且对商业银行 IT 系统的运算能力、运行效率、存储能力和稳健性提出了 很高要求。 IT 系统的架构、数据管理、数据存储流程、作业流技术的使用、 交易处理应用系统等方面都发生很大的变化。 国外银行实践表明, IT 系统是

17、 商业银行实施新资本协议初期面临的最大技术障碍之一。这一问题在我国表 现得将更加明显。我国的银行 IT 系统开发较国外发展较晚,其中包括国开行、中信银行 等直接引进全套系统的,至今已经先后经历了三代系统,以工行的系统最为 完善,同时工行已经启动第四代系统的研发。但整体而言存在很多问题。首先, IT 系统是以业务或客户为中心发展起来的,不仅缺乏整体规划, 而且随着业务的发展补丁套补丁,或者新系统不断开发。整体表现得散乱、 技术标准不一、信息集中度低、兼容性差等问题。要满足一般的战略调整都 非常不便,要达到新资本协议要求的业务、风险、管理信息系统、客户管理 系统整合更是非常困难。其次,数据仓库和数

18、据集市建设滞后。数据仓库是用以获取、清洗、转 换和存储满足内部评级要求的内部和外部数据,也是内部评级体系的主要数 据来源和结果返回存储系统。我国银行的数据仓库除了表现出以上的不易整 合的问题外,其中的数据的定义、数据结构等方面都是从当时业务的发展状 况出发的,和新资本协议的内部评级法、 资本计量等的要求存在很大的差距。 其更改和补充的难度都很大。风险数据集市是为满足内部评级的信息需求而 定义和设计的数据集合, 应包括单个客户、 单笔债项的详细数据, 以及行业、 区域、产品等资产组合以及宏观层面的数据等,是内部评级体系中模型的开 发、优化、校准和验证的基础。这方面我国银行 IT 系统表现得更为薄

19、弱。此外,目前银行 IT 系统获取、更新、校验数据的能力和新资本协议的 要求也有很大的差距。总之,目前我国银行的 IT 系统无法支持新资本协议 所要求的风险计量方法和复杂的风险管理流程,需要很大的改进。二、对于我国商业银行实施新资本协议的建议从以上的分析可以看出,我国商业银行在实施新资本协议方面的确存在 很大的差距,针对以上问题为后续进行新资本协议实施的银行提出以下改善 建议:第一,制定实施内部评级法的战略规划是顺利实施的关键。因为实施新 资本协议是一项复杂的系统工程,涉及数据、模型、 IT 系统、管理体制甚至 文化建设等方面,只有在科学的战略规划的指导下,才能保证有序地进行, 不仅工作质量得

20、到确保,也避免盲目行动带来的多余或重复工作。第二,建议夯实数据基础。根据上面的分析,数据缺失最为严重的是信 用风险和操作风险。具体来说可以从两个方面入手:首先应从完善现有数据 系统的字段定义、数据收集和整理、数据整合、补充、清洗等开始,使现有 数据达到阶段性标准。其次要尽快建立新数据结构的定义和收集制度,确保 后续数据一次性达标,避免重复整理和清洗。比如增加债务人数据、统一评 级指标等方面。但是数据的要求和评级模型是密切相关的,在成型的模型开 发完成以前只能是一方面借鉴其他银行的数据结构,另一方面不断和模型开 发部门沟通,及时对数据结构进行调整。在这个过程中,保证数据质量非常重要。目前数据仓库中的数据存在的 很多质量问题和数据来源有关, 但很大程度上也是由于对数据管理上的欠缺 引起的,比如在数据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论