版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第三单元 乘法单元要点分析 :教学内容: 本单元是在学生已经学习了两位数乘法的基础上,进一步学习三位数乘两位数的乘法,根据课程标准具体内容目标的要求,对乘法的数数计算只要求是“三位数乘两位数”,因此教材编排中删除了以往的机械、复杂的操练题目,增添了能使学生体验一些数学的思维方法的韪,多让学生尝试一些探索,使学生在解决实际问题中理解运算的意义,并能用运算解决生活中的一些问题。 单元教学目标: 1、使学生能根据两位数乘两位数的计划方法,探索并掌握三位数乘两位数的计算方法,并能正确计算,能运用乘法运算解决一些实际问题。 2、使学生掌握乘法的估算方法。在解决具体问题的过程中,能应用合适的方法进行估算。
2、 3、通过对乘法以及有趣算式规律的探索,经历数学问题探索的过程,并会运用乘法运算定律进行简便运算。课时安排内容 课时数卫星运行时间 1课时体育场 1课时神奇的计算工具 1课时探索与发现一 1课时探索与发现二 1课时探索与发现三 1课时 卫星运行时间 教学目标: 1、能结合具体情境估计三位数乘两位数的积的范围,并逐步养成估算的习惯。 2、能结合已有的知识,探索三位数乘两位数的计算方法,并能进行正确计算 3、能利用乘法运算解决一些实际问题。教学重难点:1、三位数乘两位数的笔算方法 2、因数中间有0的计算方法。 教具准备 电脑课件(或幻灯设备) 教学过程 一、创设情境,提示课题 用电脑课件呈现人造地
3、球卫星绕地球转动的情景。(或用幻灯呈现课文主题图)。 呈现字幕“我国发射的第一颗人造地球卫星绕地球一圈需要114分时间。 教师:人造地球卫星绕地球2圈、圈、圈所需要的时间,你可以计算吗? 1、揭示课题。 2、教师:这就是我们今天要学习的内容。 3、板书:卫星运行时间 二、探索交流,获取新知 1、旧知铺垫 (1)提出问题:请你算一算,人造地球卫星绕地球圈、圈、圈需要多少时间? (2)学生用算式计算 (3)反馈计算结果 (4)114×2=228(分 )114×5=570(分) 114×10=1140(分) 说一说:“114×10“你是怎么算的? 2、探索新知
4、 (1)提出问题:人造地球卫星绕地球21畔需要多少时间? (2)列出算式表示 学生在原有基础上,很容易列出算式: 114×21= (分) (3)估算结果 要求,你能估一估这个算式的得数吗? 学生可以把114看亻100来估算,也可以把21看作20来估算,学生可能回答: 学生1:比2000分多 学生2“比2500分少 (4)具体计算: 教师:你还可以用哪些方法进行计算呢? 让学生独立思考,探索,然后在小组中进行交流。教师巡视全班,观察并指导学生认识各种不同的计算方法,然后有选择的展示学生的计算方法。 解决方法1: 114×20=2280(利用旧知,先算20圈的时间) 114
5、215;1=114 2280+114=2394 解决方法2: 114×21 = 114×7×3(用21看成“7×3”) = 798×3(利用旧知,多位数乘一位数) = 2394 解决方法3 1 1 4 × 2 1 (从两位数乘两位数的笔算方法进行类推) 1 1 4114×1 2 2 8 114×20 2 3 9 4 展示过程中,要让学生说明每一步计算的算理 3、试一试 课文第34页的“试一试“ (1)让学生独立完成,教师巡视、辅导,特别要关注学有困难的学生,耐心辅导,使他们掌握笔算方法 (2)反馈运算结果 3 1
6、2 54×312 列竖式时的注意点:写作 × 5 4 1 2 4 81 5 6 0 408×25 因数中间有0的计算方法。 4 0 8 × 2 5 2 0 4 0 8 1 6 47×210因数末尾有0的简便计算 4 7 ×2 1 0 三、课堂活动: 课文第32页“练一练“的第2题 “森林医生“先认真观察算式的每一步计算,找出错误的地方,并说明错误的原因,然后再写出正确的竖式计算过程和结果. 四、巩固练习: 1、 课内外作业 课文第32页“练一练“的第1、3、4题 2、 选用课时作业设计板书设计 卫星运行时间 教学挂图 114×
7、;21= 竖式教学反思体育场教学目标:1、知识目标: 结合具体生活情境,使学生掌握乘法估算的方法,能对生活中具体事物的数量用不同的方法进行估计。2、能力目标:能运用估计的方法解决生活中的一些实际问题。3、情感目标:让学生体会数学与日常生活的密切联系,能与同学交流自己估计的方法,培养良好的学习品格,形成积极、主动的估算意识。教学重点:能够采用多种方法进行正确估算。教学难点:能比较准确地估计生活中的一些数量。教具准备:多媒体课件。学具准备:小组准备一张报纸教学过程:一、创设情境,提出问题。1、导入谈话:2008年8月8日的北京奥运会开幕式,相信大家还记忆犹新。这不,老师就为你们选取了一些精彩的片段
8、,请大家欣赏。(播放视频)2、提出问题:看了以后,同学们能提出一些数学问题吗?(如果有学生提出“参加开幕式的有多少人?”的问题后,师再问:你有什么办法估算吗?)3、提示课题:那么我们今天就来学习运用估算的方法算算体育场能容纳多少人。(板书:体育场)二、合作交流,解决问题。1、课件出示课本中的体育场全景图,并请学生认真观察体育场排列情况,估一估这个体育场能坐多少人?(1)独立思考:估计整个体育场的座位数。(2)小组交流:让每个同学都在小组中说一说自己估算的方法,估算的数据及结果。(3)小组选代表反馈交流结果。学生1:从图中看出每小块看台大约有50个座位,这个体育场可能有30个看台,大约有1500
9、个座位; 学生2:把体育场分东、西、南、北四个方位,每个方位大约坐1000人,4个方位,大约坐4000人: 学生3:体育场的每一排座位数大约是2000人,估计这个体育场有30排,大约共6000个座位。 2、出示具体数据进行估算。(1)出示其中一个看台的图片(多媒体出示),学生进行估计。方法一:将看台座位平均分成6份,每份有 人,这个看台估计有 名观众。方法二:这个看台每排有 人,共有8排,估计有 名观众。(2)这个体育场共有28个看台,如果每个看台的观众数大致相同,你能估计这个体育场有多少名观众吗?引导提问:这个体育场一共有多少个看台? 每个看台有多少个座位? 可以用什么算式来表示?学生回答,
10、教师相机板书:21×8×28或168×28估算结果:把168看成170,把28看成30,170×30=51004、小结:师:估算时应注意什么?a) 将因数看成整十、整百或整千的数,这样便于计算。b)估算时注意符合实际,估计结果接近准确值。三、联系实际,拓展练习。1、根据本班级人数,估计全校学生的人数。2、完成“练一练“的第1题:请同学们自选一张报纸,估计其中一版的字数,你能有几种估计的方法?(学生有多种方法,可以将报纸折一折或圈出一块,在知道这一块的字数的基础上再得到整版的字数“也可以数一数某一行的字数与总行数,然后相乘得到整版的字数。)3、 估一估。这
11、是小博士文具店九月中旬一个星期的营业额(单位:元),你能很快估计出这个星期的营业额吗?你还能估计出九月份的营业额吗?说说你的估计方法。星期 一 二 三 四 五 六 日营业额 294 286 291 298 302 315 312四、回顾反思,培养能力。这节课你们学会了什么?在估算过程中你遇到过困难吗?能不能说说?是怎么解决的?五、课后练习,形成能力。同学们,你们知道神舟七号飞船什么时候返回吗?我们课后回家通过上网查阅有关资料:神舟七号载人飞船绕地球飞行多少圈,估计共飞行多少千米?六、布置作业:课后完成“练一练”的第3-5题。板书设计: 体育场每个看台座位数 看台数 共有多少个座位28×
12、;6 170 170×30=510030×6=180 28(30) 180×30=540020×8=160 160×30=480021×8=168 28 168×28=4704教学反思神奇的计算工具教学目标:1、认识并会使用计算器2、从身边算起,巩固计算器的使用方法。3. 适当进行环保教育教学重难点:1、认识并熟练使用计算器。2、熟练运用计算器。教学准备: 学生每人准备一个计算器教学过程:一、引入。1. 同学们,你们知道远古时代,都有哪些计数或计算的工具么?随着科学技术的发展,现在我们可以用哪些计算工具来进行计算?2、问:在
13、日常生活中,你在哪见过计算器?3、小结:可见,在日常生活中计算器已经被广泛的使用了,那么,这节课我们就来了解一下计算器这个神奇的计算工具,并利用它解决一些生活中的问题。 板题:神奇的计算工具。二、展开学习。1. 争做优秀推销员( 认识计算器)今天老师想请同学们以推销员的身份来介绍自己的计算器。试想,如果你是这个品牌计算器的推销员,你应如何介绍这个计算器的基本按键和使用方法,使用方法可以举一个例子计算演示。比一比谁是最优秀的推销员,优秀推销员的标准为(1)声音洪亮,语言能够表述清楚(2)能够有条理的进行介绍,两人一小组试推销,互相取长补短。强调小数点2.计算器高手:(计算)作为一个优秀的销售人员
14、不但要有非常棒的口才,还要有良好的计算功底,接下来我们将进行一场计算比赛,请听清要求,女生先用口算进行计算,男生用计算器进行计算,请在规定的时间内完成老师指定的题目,并把答案记录在口算卡上,算完后马上起立,比一比口算速度快,还是计算器的速度快?拿出你的口算卡做第一组题,准备开始演示课件: 第一组:15+23= 82-62= 1000×5 =第二组:7861+3492= 35×21= 6300-2145=师问:那么,什么样的计算用口算比较快,什么样的计算用计算器比较快呢?总结:并不是所有的计算都用计算器比较快,对于比较简单的算式来说用口算更方便、更准确请你用合适的计算方式来计
15、算下题:1002-634698+18360.5×601596÷38汇报:每道题分别用哪种计算方式来算的?结果是多少?不要所有题都依赖于计算器,同学们还是要勤于思考,善于动脑,这样大脑才能越来越灵活。3.环保问题。在我们身边存在着许多数学问题,这些问题的数据是“不算不知道,一算吓一跳。”请大家看大屏幕:出示:“据统计,一个没有关紧的水龙头,每天大约浪费16千克的水。照这样计算一年(按365天计算),要浪费多少千克的水?”现在我们把这些水利用起来:“把这些水装在饮水桶中(每桶水约重20千克),大约能装多少桶?”你家每月要喝几桶水?“算算这些水够你家喝几个月?合多少年?”合作要求
16、:(1)先想一想,再在本上试着进行计算(2)如果有困难,四个人可以进行讨论,最后由一人进行汇报。看到这个数字你有什么感想?教师:看似不经意的一滴滴水,积累起来就够一家子喝上几年的。通过这组数据的计算,你有什么感想吗?小结:有句宣传词这么说:“当世界上只剩下最后一滴水的时候,那就是自己的眼泪!”想想,那将是多么可怕的事。通过计算器的计算,使我们懂得了要保护好人类赖以生存的水资源。4.你说我做。同桌之间互出题目进行计算。 5.游戏。做了半天题,同学们一定有点累了,现在我给大家变一个魔术,想看吗?出示计算器:输入12345678(做小动作,吹口气等),按=号,显示:87654321想一想:这个小魔术
17、的秘密在哪里?(事先键入99999999-)师:你们能自己设计一些类似的游戏吗?三、小结:通过今天这节课,你学到了什么?四:总结:,计算器发展到今天,还有许多不足的地方,老师希望你们读好今日书,成为明日才,去更好的完善计算器的功能。 教学反思探索与发现(一) 有趣的算式教学目标:1、 通过对有趣算式结果的探索,体会探索数学规律的方法。2、 培养学生的观察、比较能力以及探索知识的能力。3、 激发学生的学习兴趣和思维灵活性。教学重难点:1、 鼓励学生对算是及其结果的特点进行比较,从中发现一些数学规律。2、 在学习过程中掌握探索方法。教学准备:计算器教学过程:一、创设情境,激趣导入。通过谈话导入:同
18、学们,数学王国里充满了奥秘与神奇!传说数学王国里有一座山,山里有一座宝藏,等着人们去挖掘。不过,要想去挖掘宝藏,可得闯过四道关卡。每道关卡都有一组有趣的算式,如果你能找出算式中的规律,就表示你闯关成功!连闯四关,就有机会挖到宝藏。今天淘气和笑笑想去闯一闯,你们愿意与他们同行吗?那就带上你们的计算器一起出发吧!(板书: 探索与发现(一) 有趣的算式 )二、探索交流,发现规律。1、第一关:奇妙的宝塔。 1×1=1 11×11=121 111×111=12321(1)仔细观察这三道算式的答案的规律。(2)引导学生根据刚才发现的规律直接说出得数:1111×111
19、1=?(3)请学生继续写出几个这样的算式。 (4)依据规律直接填得数。1111×1111=123432111111×11111=123454321 111111×111111=12345654321 1111111×1111111=1234567654321(5)这组题的得数都是回文数,也就是一个数从左边开始念和右边开始念完全相同。与回文数相关的还有回文句,如“北京自来水来自京北”;回文对联“客上天然居,居然天上客”,“油灯少灯油,火柴当柴火”等。(6)学生举例说说。2、第二关:奇怪的。(1)引起学生的好奇心:142857奇怪在哪呢?先请同学们把1428
20、57分别乘1、2、3、4,仔细观察积的特点,看看能不能发现什么?可以让计算器来帮忙。(2) 反馈计算结果。 142857×1=142857 142857×3=428571 142857×2=285714 142857×4=571428 (3)观察积与因数的关系,及结果的特点。 全班交流。教师总结规律:用142857的个位上的7乘第二个乘数,确定积的个位是几,然后在142857中找到这个数,把它及前面的数一起移到积的后面,剩余的一部分移到积的开头,如果剩余两部分,把后面的部分放前面。如142857×2,7×214,积的个位就是4,先从1
21、42857中找到4,把4及前面的1写在得数的后面,其余的2857就写在开头,所以142857×2285714。(4)引导学生根据刚才发现的规律直接说出得数:142857×5,142857×6的积吗? (714285,857142) (5)学生独立计算后与组内同学交流,再全班交流验证结果。教师加以鼓励:恭喜你们闯关成功,有信心闯下一关吗? 3、第三关:神奇的9。(1)提出疑问:999999×999999?学生计算,用普通计算器无法直接得到准确结果,怎么办呢? (2)学生展开讨论,寻求解决问题的方法。(3)教师引导用找规律的方法解决。先出示: 99×
22、;99= 999×999= 9999×9999=借助手中的计算器,算一算。(4)小组讨论,寻找规律。汇报总结。99×99=9801 999×999=98001 9999×9999=980001教师总结规律:它们的结果都以数字98开头,以1结尾,中间填0,0的个数是算式中一个乘数里9的个数减1得来的。 (5)根据规律,直接写出以下算式的结果。 99999×99999 =999999×999999 =9999999×9999999 =99999999×99999999 =4、第四关:寻找神秘的数。 (1) 板
23、书呈现0-9十个数字。请你在这十个数字中,随意选出4个你喜欢数字。(2)老师也选取了4个数字:6、1、7、4。(3)“卖关子”,引起学生学习的兴趣: 只要按我的方法去做,不管你挑哪四个数字,我都知道你的结果。(4)计算规则。 规则:将四个数字组成数字不重复的最大四位数和最小的四位数。 如:1,2,5,0。 最大四位数:5210 最小四位数:1025 然后两数相减,并把得出的四位数字重新组成一个最大的四位数与最小的数,再次相减例如:5 2 1 0 8 5 4 1 8 7 3 0 1 0 2 5 1 4 5 8 3 0 7 8 4 1 8 5 7 0 8 3 5 6 5 2 6 5 5 2 9 9
24、 6 3 6 6 4 2 7 6 4 1 2 5 5 6 3 6 9 9 2 4 6 6 1 4 6 73 9 9 6 6 2 6 4 4 1 7 6 6 1 7 4在不断重复的过程中,得到的最后结果都是6174。(5)学生探索。 学生独自按照规则进行计算。 最终发现,计算的结果全部都是“6174”。教师加以鼓励:说得太精彩了!老师为你们感到自豪!祝贺你们用自己的智慧连闯四关。看来,数学王国里的宝藏很快就会让你们挖到。三,课外拓展请同学们读读44页的“数学阅读”,了解一下计算工具的演变历史。教学反思探索与发现(二)乘法结合律和交换律教学目标:1、知识目标:通过探索活动,使学生进一步体会探索的过
25、程和方法。2、技能目标:通过探索活动,使学生发现乘法结合律、交换律,并懂得用字母进行正确的表示。使学生在理解乘法结合律、交换律的基础上,会对一些乘法算式进行 简便计算。3、情感目标:培养学生学习数学的兴趣。教学重难点:1、重点:指导学生探索乘法的结合律。2、难点:发现规律、总结规律、应用规律。教学过程:一、导入谈话,揭示课题同学们,在数学运算中,有很多有趣的规律。今天,我们再一起去探索,看一看,我们还能发现些什么规律(板书课题:探索与发现) 二、活动探索规律(一)、乘法交换律1、计算下面几组算式17×13= 125×8= 13×17= 8×125=2、你
26、发现了什么?3、你能把你发现的规律概括出来吗?4、用字母表示。如果用字母a ,b表示两个数,你能把你发现的规律表示出来吗?(二)、乘法结合律1、出示摆好的长方体。(教材45页长方体)教师:老师在课下用许多小正方体搭了这样一个长方体,你们知道老师用了多少个小正方体吗?学生自主探究,也可以小组内商量。学生交流验证,学生可能有不同的计算方法,但无论用什么方法计算,其结果都是一样的。质疑:为什么结果都是一样的呢?这其中是不是蕴含着某些规律呢?板书算式:3×(5×4) (3×5)×4 3×4×5=3×20 =15×4 =12
27、×5=60 =60 =60 2.探索乘法结合律运算的规律 (1)师:请同学们观察这三个算式,他们之间有什么关系?可以用什么符号连接?板书:3×(5×4)=(3×5)×4= 3×4×5(2)这三个算式有什么相同的地方?有什么不同的地方?生: 这三个算式乘数相同,运算顺序不同,结果相同。师:那这种现象是不是偶然呢?生:再找几组这样的算式验证一下不就知道了吗?师:这个办法好,我们再举一些其他的算式,看一看它们的结果是否相等。为了节省大家计算的时间,在运算时可以使用计算器。(学生在小组内举例讨论,教师巡视指导。)师:谁来介绍一下你们
28、举例的情况?生:我们小组举的例子是(34×28)×21和34×(28×21),发现计算的结果也是相同的。生:我们小组举的例子是(15×25)×4和15×(25×4),计算的结果也是相同的。师:从刚才大家所举的例子来看,每一组的结果都是相同的。那么从这一过程中,你能发现乘法运算中的规律吗?学生概括:乘法运算中三个数相乘,可以先算前两个数,再把所得的积与第三个数相乘,也可以先算后两个数,所得的积再与第一个数相乘。3、用字母表示定律师:这个同学概括得真好。如果用a,b,c表示三个数,你能写出发现的规律吗?学生用字母表示:
29、(a×b)×c=a×(b×c)。师:这就是乘法结合律。请大家想一想,我们是怎样发现乘法结合律的。师:老师把同学们所说的过程表示出来就是,发现问题、举例验证、概括规律。这就是我们发现规律的过程。4、乘法结合律的应用。想一想,计算43×25×4怎样最简便,应用了什么定律。三、介绍小知识 学生阅读教材47页的“你知道吗”。教学反思探索与发现(三)乘法分配律教学目标: 1.引导学生探究和理解乘法分配律。 2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。 3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。教学
30、重难点: 1、乘法分配律的意义和应用。 2、 乘法分配律的反应用。教学准备:课件、口算题、10个红圆片、6个白圆片。教学过程:一、设疑导入 师:同学们,上节课我们学习了乘法结合律和乘法交换律。谁来说一说,掌握乘法结合律和乘法交换律有什么作用? 生:可以使计算简便。 师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。) 今天我们在一起去探索,寻找新的发现。 【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】三、 探究发现 1动手操作,按要求摆学具每行摆
31、5个红圆片,3个白圆片,摆了2行,共摆了多少个圆片? 学生思考怎样计算,得出以下两种解法:(5+3)×2或5×2+3×2师:观察这两个算式,你发现了什么?(两个算式的结果相同。)说明这两个算式关系是什么?(相等。) 师:算式,看看算式的左边和右边有什么相同和不同之处?那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算? (学生计算,并汇报。) 师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个
32、数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么? 3结论。 生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。 师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。) 师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗? (a+b)×c=a×c+b×c 你有什么好办法记住这个定律吗?介绍一种记忆方法:a代表爸爸、b代表妈妈、×代表爱、c代表我。即:(a+b)×c=a×c+b×c爸爸和妈妈爱我,也就是爸爸爱我,妈妈也爱我。或c×(a+b)=c×a+c×b,我爱爸爸和妈妈,也就是我爱爸爸,我也爱妈妈。 师:回到第一题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024在线学生安全协议电子签署及风险评估合同2篇
- 避孕药具培训
- 防范学生校园贷宣传教育
- 白石销售合同范例
- 《劳动标准培训》课件
- 全屋定制意向金合同范例
- 装备招标合同范例
- 防爆开关维修投标合同范例
- 《人生观分享》课件
- 总价包干合同总价合同范例
- 《项目管理培训课程》课件
- 2024秋国开《管理学基础》形考任务(1234)试题及答案
- 叉车安全管理
- 制药课程设计三废处理
- 2025年蛇年年度营销日历营销建议【2025营销日历】
- 企业所得税汇算清缴申报表电子表格版(带公式-自动计算)
- 不等式在数学问题中的应用毕业论文
- 进口肉类产品名称HS编码及CIQ代码
- 基于Simulink三相桥式整流电路及其滤波器的设计
- 中国多灶性运动神经病诊治指南2019完整版
- 桥梁工程课程设计计算书6310426554
评论
0/150
提交评论