导数的四则运算法则导学案_第1页
导数的四则运算法则导学案_第2页
导数的四则运算法则导学案_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档导数的四则运算法则 (1) 导学案三大段一中心五环节高效课堂导学案 制作人:张平安修改人:审核人: 班级:姓名:组名:课题第十一课时导数的乘法与除法法则学习目标 1、了解两个函数的积、商的求导公式; 2、会运用 上述公式,求含有积、商综合运算的函数的导数;3、能运用导数的几何意义,求过曲线上一点的切线。学习重点函数积、商导数公式的应用学习难点函数积、商导数公式学法指导探析归纳,讲练结合学习过程一自主学习复习:两个函数的和、差的求导公式1. 导数的定义:设函数在处附近有定义,如果时,与的 比(也叫函数的平均变化率) 有极限即无限趋近于某个常数,精品文档我们把这个极限值叫做函数在处的导数,

2、记作,即2. 导数的几何意义:是曲线上点()处的切线的斜率因 此,如果在点可导,则曲线在点()处的切线方程为3. 导函数 ( 导数 ): 如果函数在开区间内的每点处都有导 数,此时对于每一个,都对应着一个确定的导数,从而构成 了一个新的函数 , 称这个函数为函数在开区间内的导函数, 简称导数,4. 求函数的导数的一般方法:( 1)求函数的改变量( 2)求平均变化率(3)取极限,得导数5. 常见函数的导数公式: ;6. 两个函数和(差)的导数等于这两个函数导数的和 (差),即探究新课 设函数在处的导数为, 。我们来求在处的导数。令,由于知在处的导数值为。因此的导数为。精品文档一般地,若两个函数和的导数分别是和,我们有特别地,当时,有二师生互动例 1 :求下列函数的导数:(1);(2);(3)。例 2 :求下列函数的导数:(1);(2)。三、自我检测课本练习 1.四、课堂反思1 、这节课我们学到哪些知识?学到什么新的方法?2 、你觉得哪些知识,哪些知识还需要课后继续加深理解?五、拓展提高课本习题 2-4:A组 4(1)、(2)、(3)、(5)、(6);

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论