




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、五教学广贪碣票问题数材分析/专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的旧教材相比,这部分内容是新增的内容。 本单元教材通过几个直观例子 ,借助实际操作,向学生介绍 “鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体 (或 人)。这类问题依据的理论,我们称之为“抽屉原理”。“抽屉原理”最先是由 19世界的德国 数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,
2、也称为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂 ,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变 万化的,用它可以解决许多有趣的问题 ,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。学情分析工“抽屉原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时 要引导学生先判断某个问题是否属于“抽屉原理”可以解决的范畴。能不能将这个问题同“抽 屉原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握 本章内容的程度。教
3、材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。1 .引导学生通过观察、猜测、实验、推理等活动,经历探究“抽屉原理”的过程 ,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。2 .提高学生解决简单的实际问题的能力。3 .通过“抽屉原理”的灵活应用,感受数学的魅力。1 .让学生初步经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画 草图的方式进行“说理”。通过“说理”的方式理解“抽屉原理”的过程是一种数学证明的 雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准 备。
4、2 .有意识地培养学生的“模型”思想。当我们面对一个具体问题时,能否将这个具体问题 和“抽屉问题”联系起来,能否找到该问题中的具体情境与“抽屉问题”的“一般化模型” 之间的内在关系,找出该问题中什么是“待分的东西”什么是“抽屉”,是解决该问题的关键。 教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。这个过程是学生经历将具体问题“数学化”的 过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。3 .要适当把握教学要求。“抽屉原理”本身或许并不复杂,但它的应用广泛且灵活多变。 因此,用“抽屉原理
5、”解决实际问题时,经常会遇到一些困难。 例如,有时要找到实际问题与 “抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为 “抽屉”,要用几个“抽屉”。 因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就 可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。1 鸽巢问题1课时2 “鸽巢问题”的具体应用1课时教学内容鸽巢问题教材第68、第69页。数学目标1 .在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。2 .提高学生有根据、有条理地进行思考和推理的能力。3 .通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生
6、感受数学的魅 力。也点艰点重点:引导学生把具体问题转化成“鸽巢问题” 难点:找出“鸽巢问题”解决的窍门进行反复推理。教具学具 铅笔、笔筒、书等。教学辽捏师:同学们,老师给大家表演一个“魔术”。一副牌,取出大小王,还剩52张牌,请5个同学 上来,每人随意抽一张,我知道至少有2人抽到的是同花色的,相信吗?试一试。师生共同玩几次这个“小魔术”,验证一下。师:想知道这是为什么吗?通过今天的学习,你就能解释这个现象了。 下面我们就来研究这 类问题,我们先从简单的情况入手研究。【设计意图:紧紧扣住学生的好奇心,从学生喜欢的扑克牌“小魔术”开始,激活认知热情。使学生积极投入到对问题的研究中。同时,渗透研究问
7、题的方法和建模的数学思想】验.经历过程1 .讲授例1。(1)认识“抽屉原理”。(课件出示例题)把4支铅笔放进3个笔筒中,那么总有一个笔筒里至少放进2支铅笔。学生读一读上面的例题,想一想并说一说这个例题中说了一件怎样的事。教师指出:上面这个问题,同学们不难想出其中的道理,但要完全清楚地说明白,就需给出证明。(2)学生分小组活动进行证明。活动要求 : 学生先独立思考。 把自己的想法和小组内的同学交流。 如果需要动手操作,要分工并全面考虑问题。(谁分铅笔、谁当笔筒即“抽屉” 、谁记录等 ) 在全班交流汇报。(3)汇报。师 : 哪个小组愿意说说你们是怎样证明的? 列举法证明。学生证明后,教师提问 :把
8、 4 支铅笔放进3 个笔筒里,共有几种不同的放法?(共有4 种不同的放法。 在这里只考虑存在性问题 ,即把 4 支铅笔不管放进哪个笔筒,都视为同一种情况)根据以上 4 种不同的放法,你能得出什么结论?( 总有一个至少放进2 支铅笔 ) 数的分解法证明。可以把 4 分解成三个数,共有四种情况:(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中 , 至少有一个数是不小于2 的。 反证法 (或假设法)证明。让学生试着说一说,教师适时指点:假设先在每个笔筒里放 1 支铅笔。那么 ,3 个笔筒里就放了 3 支铅笔。还剩下1 支铅笔 ,放进任意一个笔筒里,那么这个笔筒里就
9、有2 支铅笔。(4)揭示规律。请同学们继续思考 : 把 5 支铅笔放进4 个笔筒中 ,那么总有一个笔筒里至少放进几支铅笔,为什么 ? 如果把 6 支铅笔放进 5 个笔筒中,结果是否一样呢?把 7 支铅笔放进6 个笔筒中呢?把10 支铅笔放进 9 个笔筒中呢 ?把 100 支铅笔放进99 个笔筒中呢 ?学生回答的同时教师板书 :数量 (支) 笔筒数(个)结果5 总有一个笔筒里提问 :观察板书 ,你有什么发现? 小组讨论,引导学生得出一般性结论。(只要放的铅笔数比笔筒的数量多1,总有一个笔筒里至少放进2 支铅笔 )追问:如果要放的铅笔数比笔筒的数量多2,多 3,多 4 呢?学生根据具体情况思考并解
10、决此类问题。 教师小结。上面我们所证明的数学原理就是最简单的 “抽屉原理”,可以概括为:把 m 个物体任意放到 m- 1 个抽屉里 ,那么总有一个抽屉中至少放进了 2 个物体。2.教学例 2 。师 :把 7 本书放进 3 个抽屉,不管怎么放,总有一个抽屉里至少放进3 本书。为什么?自己想一想,再跟小组的同学交流。学生独立思考后,进行小组交流;教师巡视了解情况。组织全班交流,学生可能会说:?我们可以动手操作,选用列举的方法:654331111201232第一个抽屉7第二个抽屉0第三个抽屉0通过操作 ,我们把 7 本书放进 3 个抽屉,总有一个抽屉至少放进3 本书。?我们可以用数的分解法:把 7
11、分解成三个数,有(7,0,0),(6,1,0),(5,1,1),(4,1,2),(3,1,3),(3,2,2)这样六种情况。在任何一种情况中,总有一个数不小于 3。师:同学们,通过上面两种方法,我们知道了把7本书放进3个抽屉,不管怎么放,总有1个 抽屉里至少放进 3本书。但随着书的本书增多,数据变大,如果有8本书会怎样呢?10本呢?甚 至更多呢?用列举法、数的分解法会怎样 ?(繁琐)我们能不能找到一种适用各种数据的一般方 法呢?请同学们自己想一想。学生进行独立思考。师:假设把书尽量的“平土分”给各个抽屉,看每个抽屉能分到多少本书,你们能用什么算 式表示这一平均分的过程呢 ?生:7+3=21师:
12、有余数的除法算式说明了什么问题?生:把7本书平均放进3个抽屉,每个抽屉放2本书,还剩1本;把剩下的1本不管放到哪个 抽屉,总有一个抽屉至少放 3本书。师:如果有8本书会怎样呢?生:8+3=22,可以知道把8本书平均放进3个抽屉,每个抽屉放2本书,还剩2本;把剩 下的2本中的1本不管放到哪个抽屉,总有一个抽屉至少放 3本书。师:10本书呢?生:10+3=3- 1,可知把10本书平均放进 3个抽屉,每个抽屉放3本书,还剩1本;把剩下 的1本不管放到哪个抽屉,总有一个抽屉至少放 4本书。师:你发现了什么?师生共同小结:要把a个物体放进n个抽屉,如果a+n=bc(c 0),那么一定有一个抽屉 至少放(
13、b+1)个物体。【设计意图:在渗透研究问题、探索规律时,先从简单的情况开始研究。证明过程中 ,展示 了不同学生的证明方法和思维水平 ,使学生既互相学习、触类旁通 ,又建立“建模”思想,突出 了学习方法】目III课末总结,梳理提升师:通过今天的学习,你有什么收获?生:物体数除以抽屉数,那么总会有一个抽屉里放进比商多1的物体个数。师:你能在生活中找出这样的例子吗 ?学生举例说明。师:之所以把这个规律称之为“原理”,是因为在我们的生活中存在着许多能用这个原理解决的问题,研究出这个规律是非常有价值的。同学们继续努力吧!【设计意图:研究的问题来源于生活,还要还原到生活中去。 在教学白最后,请学生总结这
14、节课学会的规律,再让学生举一些能用 “鸽巢问题”解释的生活现象,以达到巩固应用的目的】板书议计鸽巢问题教学瓦电1 .学生对“至少”理解不够,给“建模”带来了一定的难度。2 .培养学生的问题意识,借助直观操作和假设法,将问题转化成“有余数的除法”形式,可以使学生更好地理解“抽屉原理”的一般思路。3 .经历将具体问题“数学化”的过程,有利于提高学生的数学思维能力,让学生在运用新学知识灵活巧妙地解决实际问题的过程中,进一步体验数学的价值,感受数学的魅力,培养学习数学的兴趣谭健作业新设计A类1.1001只鸽子飞进50个鸽舍,无论怎么飞,我们一定能找到一个鸽子最多的鸽舍,它里面至少有()只鸽子。2.从8
15、个抽屉中拿出17个苹果,无论怎么拿,我们一定能找到一个拿出苹果最多的抽屉 从它里面至少拿出了 ()个苹果。3.从()(填最大数)个抽屉中拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了 7个苹果。(考查知识点:鸽巢问题;能力要求:灵活运用所学知识解决简单的具体问题)B类你能证明在任意的 37人中,至少有4人的属相相同吗?说明理由。(考查知识点:鸽巢问题;能力要求:灵活运用所学知识解决生活中的实际问题)参考答案课堂作业新设计A类:1. 21 2. 3 3. 4B类:把12个属相看作12个抽屉。37+12=3-1 3+1=4 即在任意的37人中,至少有4人属相相同。 教材习题第68页“
16、做一做”1 .我们可以假设3只鸽子分别飞进了三个鸽笼 ,那么剩余的2只鸽子无论飞进哪个鸽笼 都会出现“总有一个鸽笼至少飞进了2只鸽子”这个结果。2 .因为5人抽4种花色的扑克牌,假设其中的4人每人分别抽到其中一种花色,那么剩下的1个人无论抽到什么花色,就出现“至少有2张牌是同花色”这个结果。第69页“做一做”1. 11 + 4=2只)3(只),可知如果每个鸽笼飞进 2只鸽子,剩下的3只鸽子飞进其中任意 3个鸽笼,那么至少有3只鸽子飞进了一个鸽笼。2. 5 +4=八)1(人),可知如果每把椅子上坐1人,剩下的1人再生其中任意的1把椅子上,那么至少有1把椅子上坐了 2人。教学内容“鸽巢问题”的具体
17、应用教材第70、第71页。教学目标1 .在了解简单的“抽屉原理”的基础上,使学生会用此原理解决简单的实际问题。2 .提高学生有根据、有条理地进行思考和推理的能力。3 .通过用“抽屉原理”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。引导学生把具体问题转化为“抽屉问题”,找出这里的“抽屉”是什么,“抽屉”有几个再利用“抽屉原理”进行反向推理。教具学具课件、纸盒1个,红球、蓝球各 4个。.痴 1fc-事县廉事 看点<-*-*-*-*-* 务卡,京基金 V >>*-*-* *#条左4fr 量务叁"等If1.讲月黑风高穿袜子的故事。一天晚上,毛毛房间的电夕T
18、忽然坏了 ,伸手不见五指。这时他又要出去,于是他就摸床底下 的袜子。他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑日e中,无法知道 哪两只是颜色相同的。毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的一双。你们知道最少应该拿几只袜子出去吗?4 .在学生猜测的基础上揭示课题。教师:这节课我们利用“抽屉原理”解决生活中的实际问题。(板书:“抽屉原理”的具体应用)探究体验,经历过程1 .课件出示例3。盒子里有同样大小的红球和蓝球各4个耍想摸出的一定有 2个同色的 至少要摸出几个球?2 .学生自由猜测。可能出现:摸2个、3个、4个、5个等。说说你的理由。3 .学生摸球验证。摸2
19、个球可能出现的情况 摸3个球可能出现的情况 摸4个球可能出现的情况 摸5个球可能出现的情况按猜测的不同情况逐一验证 ,说明理由。:1红1蓝;2个红球;2个蓝球。:2红1蓝;2蓝1红;3红;3蓝。:2红2蓝;3蓝1红;3红1蓝;4红;4蓝。:4红1蓝;3蓝2红;3红2蓝;4蓝1红。教师:通过验证,说说你们得出了什么结论。小结:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有 2个同色的,至少要摸3个球。4 .引导学生把具体问题转化为“抽屉问题”。教师:生活中像这样白例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前 面所讲的“抽屉原理”联系起来进行思考呢?(1)思考。“摸球问题”与
20、“抽屉原理”有怎样的联系 ?应该把什么看成“抽屉”?有几个“抽屉” ?要分放的东西是什么?得出什么结论?(2)小组讨论。(3)学生汇报,引导学生把具体问题转化为“抽屉问题”。教师讲解:因为一共有红、蓝两种颜色的球 ,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一抽屉”。这样,把“摸球问题”转化成“抽屉问题”,即“只要分的物体个数比抽屉个数多,就能保证有一个抽屉至少有 2个球”。从最特殊的情况想起,假设两种颜色白球各拿了 1个,也就是在两个“抽屉”里各拿了 1 个球,不管从哪个“抽屉”里再拿 1个球,都有2个球是同色的,假设最少要摸 a个球,即 (a)及=1(b),当b=1时,a就最
21、小。所以一次至少应拿出 1 >2+1=3(个)球,就能保证有2个球 同色。结论:要保证摸出2个同色的球,摸出的球的数量至少要比颜色种数多1。【设计意图:在实际问题和“鸽巢问题”之间架起一座桥梁并不是一件容易的事。因此 , 教师应有意识地引导学生朝这个方向思考 ,慢慢去感悟。逐步引导学生把具体问题转化为“鸽 巢问题”,并找出这里的“鸽巢”是什么 ,“鸽巢”有几个】课末总结,梳理提升师:在本节课白学习中,你有哪些收获? 学生自由交流各自的收获、体会。板书议计“抽屉原理”的具体应用教学风理1 .在思考应该把什么看成抽屉,要分放的东西是什么时,学生一开始可能会缺乏思考的方 向,很难找到切入点。2
22、 .不同颜色的球的个数,很容易给学生造成干扰。因此教学时,教师要允许学生借助实物 操作等直观方式进行猜测、验证。课签作业新设计A类1 .某班有个小书架,40个同学可以任意借阅,小书架上至少要有多少本书,才能保证至少 有一个同学能借到两本或两本以上的书?2.有4双不同颜色的手套,至少拿几只手套才能保证有两只手套是成对的?(考查知识点:鸽巢问题;能力要求:运用“鸽巢问题”的原理解决实际问题)B类有红色、白色、黑色的筷子各10根混放在一起,如果让你闭上眼睛去摸,你至少要摸出几 根才能保证有 2根筷子是同色的?为什么?至少摸出几根,才能保证有4根同色白筷子?为什 么?(考查知识点:鸽巢问题;能力要求:运用“鸽巢问题”的原理解决问题)参考答案课堂作业新设计A类:1 .将40个同学看作40个“抽屉”,书看作被分的物体曲“抽屉原理”知:要保证有一个 抽屉中至少有两个物体,物体数至少为40+1=41(个)。即小书架上至少要有 41本书。2 . 5只B类:把三种颜色的筷子当作三个“抽屉”,根据“抽屉原理”可知:至少拿4根筷子才能保证有2根同色筷子。从最特殊的情况想起,假设三种颜色的筷子各拿了3根,也
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江中医药大学滨江学院《医患沟通与技巧》2023-2024学年第二学期期末试卷
- 图木舒克职业技术学院《学前教育史》2023-2024学年第二学期期末试卷
- 潍坊环境工程职业学院《科研方法论》2023-2024学年第二学期期末试卷
- 厚、薄膜混合集成电路及消费类电路项目效益评估报告
- 浙江警官职业学院《地域史研究方法与实践》2023-2024学年第二学期期末试卷
- 河池广西河池市环江县招聘教师29人笔试历年参考题库附带答案详解
- 演艺导演合同范本
- 山西农业大学《工程力学A1》2023-2024学年第二学期期末试卷
- 福州英华职业学院《简笔画与绘本》2023-2024学年第二学期期末试卷
- 苏州工艺美术职业技术学院《JAVA企业级开发》2023-2024学年第二学期期末试卷
- 新部编版四年级下册小学语文全册课件PPT
- 高中人教物理选择性必修一第3章第5节多普勒效应课件
- 全套桥梁施工技术交底记录
- 2021年山东省威海市中考语文真题(解析版)
- 主动脉夹层的护理-ppt课件
- 高新技术企业认定申请书样例与说明
- 数据结构英文教学课件:chapter6 Tree
- 高压氧科工作总结高压氧科个人年终总结.doc
- 《政治学概论》教学大纲
- 桥梁缺陷与预防
- 食品生物化学习题谢达平(动态)
评论
0/150
提交评论