开关磁阻电机设计MATLAB程序_第1页
开关磁阻电机设计MATLAB程序_第2页
开关磁阻电机设计MATLAB程序_第3页
开关磁阻电机设计MATLAB程序_第4页
开关磁阻电机设计MATLAB程序_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、%-开关磁阻电机设计实例%-Time:2013.08.20%-By Sun Peng(悟空)%-%-给定参数要求:% 功率:PN=11kw 电源电压:UN=380V(线电压) 额定转速:n=1500r/min 额定效率: ita=0.88 % 调速范围:2002000r/min 其中2001500r/min为恒转矩特性 15002000r/min为恒功率特性% 运行方式:连续运行 绝缘等级:E 电机转子承受的扭矩不得小于3500N.m%-%-相数、极数、绕组端电压:采用4相8/6极结构,功率变换器主电路选用每相一个主开关管的裂相式电路clc;clear;global Nq Nr Ns Nph

2、Da Ds g gi lFe la global miu0 sigmaglobal w v u y h q p m n global l_deltaglobal alph theta belta global w v u h b f m miu0 gamma gh hms delta sigmaglobal t1 t2 t3 m1 m2 n1 b1 b2 S5 S6 S6p n_theta1global p1 p2_1pie p2_2pie p2_3pie p2 p3 p4 p5 p6 p7 sum_pglobal lF gF L_2D L1global bps bpr hcs hcrglob

3、al Sg Sts Str Scs Scr hmr lts ltr lg lcs lcr global Bts Btr Bg Bcs Bcr Bpsglobal Hts Htr Hg Hcs Hcrglobal fai_2 Fai sum_F i_s global theta_1 global L1 Lao Lu U Rp global W_pie Tem Tem_pie global fai_1m fai_s fai_m km omigaglobal I Im_star Im i_m i_sglobal a0 a1global Sw ks ki J_pie Sa_pie Sa Scu J I

4、global UN PN nN ita A_pie B_delta_pie Pem Tem Tem_pie global theta_on theta_off theta_c theta_u theta_hr theta_0 theta_n1 theta_2 theta_3 theta_4 theta_a beta_s beta_r beta_sf beta_rfglobal lambda Da_ratio_Dsglobal Di dsglobal tal_r B_delta I i_m Im_star Sw Sa Scu ks J lav l Rp Gcu VsFe VrFe GFe A P

5、cu Kglobal alph tal_r_degree tal_s_degree global w v u y h q p m n miu0global P1 P2 P3 P4 P5 sum_P gF sigma lF global Lu L2Dglobal Lu ik Pasi_u Pasi_1 Pasi_aglobal fai_ms fai_m i_ms i_m a iso Pasi_soglobal Nph Ns Ds Da bps lFe g gi global hmr hms hms_pie hcs hcrglobal Bts1 Bts2 Bts3 Bts4 Btr1 Btr2 B

6、tr3 Btr4 Bg Bcs1 Bcs2 Bcr1 Bcr2 B_min B_max B_amin B_amaxglobal Sts1 Sts2 Sts3 Sts4 Str1 Str2 Str3 Str4 Scs1 Scs2 Scr1 Scr2 Scs Scr Sgglobal Hts1 Hts2 Hts3 Hts4 Htr1 Htr2 Htr3 Htr4 Hcs1 Hcs2 Hcr1 Hcr2 Hg global lts1 lts2 lts3 lts4 ltr1 ltr2 ltr3 ltr4 lcs1 lcs2 lcr1 lcr2 lgglobal Fai_am fai_0 fai_2am

7、 fai_am i_am Sum_F sum_Fam i_shr fai_shr miu0 Lao_hr gi_pie delta_beta kd km sigma_m global Ac Bc Cc ka Pasi_1u theta_1u theta_x Pasi_thetax Pasi_a_mtrix Pasia pasia Pasihr pasihr Pasi_hr_mtrix Pasi_u_mtrix Pasi_1_mtrix Matrixglobal Pasi_ahr theta_ahr Ac_pie Bc_pie Cc_pie Torque current Lao_hr Pasi1

8、k1 Pasihrk1 ik1 ik2 ik3global k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 LengthN steph Nq=4; %1.相数Ns=8; %2.定子极数Nr=6; %3.转子极数UN=380;%额定电压Ud=3*sqrt(2)*UN/pi; %三相全波整流后直流电压U=1.1*(Ud/2); %4.绕组端电压(1.1系数为考虑电容滤波器存在导致的电压升高系数)%-主要尺寸选择PN=7.5; %额定功率KwnN=1500; %额定转速1500r/minita=0.88; %额定效率Pem=PN*(1+ita)/(2*ita); %5.电磁功率Kwla

9、mbda=1.2; %6.细长比(参照中小型交流电机经验数据,取0.53.0,对于SRM,典型取值1)A_pie=28000; %7.电磁负荷出选A_pie=28000A/m(1500050000A/m); B_delta_pie=0.40T(0.290.55)B_delta_pie=0.4;ki=0.5;km=0.8;Da=(6.1/(B_delta_pie*A_pie)*(ki/km)*(Pem*(103)/nN)*(1/(1.05*lambda)(1/3)*(103); %8.转子外径 /mm/Da=Keep_decimal(Da,0);% la=lambda*Da; %9.贴心叠长la

10、=Round_off_la(la);%-圆整铁心叠长l_delta=1.05*la;Da_ratio_Ds=Ratio_Da_Ds(Nq,Ns,Nr); %确定定转子外径比Ds=Da/Da_ratio_Ds; %10.定子外径Ds=Standardizing_Ds(Ds); %将定子外径规格化到已有机座New_Da_ratio_Ds=Da/Ds;%-其他结构尺寸及绕组匝数g=0.4; %11.气隙% beta_s=21; %12.定转子极弧,查表取经典值% beta_r=23;beta_s=Pore_arc_s(Nq,Ns,Nr);beta_r=Pore_arc_r(Nq,Ns,Nr);bet

11、a_sf=beta_s*pi/180; %定子极弧beta_rf=beta_r*pi/180; %转子极弧bps=(Da+2*g)*sin(beta_sf/2); %13.定转子极宽bps=Keep_decimal(bps,2); %保留两位小数bpr=Da*sin(beta_rf/2);bpr=Keep_decimal(bpr,2); %保留两位小数gi=bps/2; %14.第二气隙hcs=1.3*(bps/2); %15.定转子轭高hcs=Keep_decimal(hcs,2); %保留两位小数hcs_arter_roundoff=Round_off_h(hcs); %进行圆整hcr=1

12、.4*(bpr/2);hcr=Keep_decimal(hcr,2); %保留两位小数hcr_after_roundoff=Round_off_h(hcr); %进行圆整Di=Da-2*(gi-g)-2*hcr; %16.轴径Di=Keep_decimal(Di,1); %保留一位小数ds=(Ds-Da-2*g-2*hcs)/2; %17.定子槽深ds=Keep_decimal(ds,2); %保留两位小数ds_after_roundoff=Round_off_h(ds); %进行圆整% Di_after gi_after=Adapt_Di_gi(Di,Da,hcr,gi,g); %18.电机

13、尺寸需根据工程设计特点进行圆整,取平行转子极结构Di gi=Adapt_Di_gi(Di,Da,hcr,gi,g); kFe=0.93;lFe=kFe*la; %19.有效铁心长度lFe=Round_off_l(lFe); %进行圆整tal_r=(pi*Da)/Nr; %20.转子极距tal_r=Keep_decimal(tal_r,2); %保留两位小数tal_r_degree=2*pi/Nr;%-以上程序段已经检查无误-%-控制参数theta_u=0;theta_on=0; %21.开通角theta_off=theta_u+(2*pi/Nr)-beta_rf)/2; %关断角theta_a

14、=pi/Nr;theta_2=theta_a-abs(beta_rf-beta_sf)/2;theta_1=theta_a-(beta_sf+beta_rf)/2;% theta_0=-theta_1;% theta_0=theta_1-fai_s*theta_a/(12*fai_ms);% theta_0=theta_1-fai_s*theta_a/(12*fai_ms);theta_n1=(-1)*theta_1;theta_3=theta_a+(theta_a-theta_2);theta_4=tal_r_degree-theta_1;% theta_0=-10*pi/180;% the

15、ta_1=10*pi/180;theta_hr=theta_off;theta_c=theta_off-theta_on; %导通角%-每相绕组串联匝数Bps=1.6;B_delta=0.805*(bps/tal_r)*Bps; %重新校核Nph=(3.04*Nr*U*theta_c)/(nN*B_delta*(Da/(103)*(l_delta/(103); %22.每相绕组串联匝数Nph1=(3.04*Nr*U*theta_c)/(nN*B_delta*(Da/(103)*(l_delta/(103); Adapt_B_delta();%-对齐位置和不对齐位置磁化曲线计算%-theta_u

16、不对齐位置电感Lu计算% global Nr Ns Nph Da Ds bps g gi lFe la hcs beta_sf beta_rf alph tal_r_degree tal_s_degree % global w v u y h q p m n pi% % % tal_r_degree=2*pi/Nr; %转子极距角% % % tal_s_degree=2*pi/Ns; %定子极距角% % % % beta_sf=beta_s*pi/180; %定子极弧% % % % beta_rf=beta_r*pi/180; %转子极弧% % % % p=(Da/2+g)*sin(beta_

17、sf/2);% % % % w=(Da/2+g)*tan(tal_s_degree/2)-p; % % % w=(Da/2+g)*tan(pi/Ns)-(bps/2); %已阅% % % v=(Ds/2-hcs-(Da/2+g)/cos(pi/Ns)/cos(pi/Ns); %已阅% % % alph=(pi/2)-(beta_sf/2); %已阅% % % u=w/tan(alph); %已阅% % % % h1=sqrt(Ds/2-hcs)*(Ds/2-hcs)-p2);% % % % h2=sqrt(Ds/2-hcs)*(Ds/2-hcs)-(p+w)2);% % % % u=h2-h1

18、;% % % % alph=atan(w/u);% % % % v=h1-(Da/2+g);% % % % y=(Da/2)+g-(Da/2)*cos(tal_r_degree-beta_rf)/2;% % % y=(Da/2)+g-(Da/2)*cos(tal_r_degree-beta_rf)/2); %已阅% % % % h=Da/2*sin(tal_r_degree-beta_rf)/2)-p;% % % h=(Da/2)*sin(tal_r_degree-beta_rf)/2)-(bps/2); %已阅% % % q=v/2; %已阅% % % p=bps/2;% % % m=u+q

19、; %已阅% % % n=y+q; %已阅% % % P1=alph*(m2)/(4*(w2)*(2*v+u)2);% % % P2=(2/pi)*( log(n/h)+2*(n-h)*y/(w*v)-( (n2-h2)/(4*(w*v)2) )*(pi*w*v-2*(y2)-(n3-h3)*y*pi/(6*(w*v)2)+(n4-h4)*(pi2)/(64*(w*v)2) );% % % P3=(2/tal_r_degree)*log(2*tan(tal_r_degree-beta_rf)+pi-(tal_r_degree-beta_rf)/(2*tan(tal_r_degree-beta_

20、rf)+pi-2*(tal_r_degree-beta_rf)-beta_rf);% % % P4=(2/(pi-tal_r_degree)*log(2*gi/(h*(pi-tal_r_degree);% % % P5=(p+h)/gi-(2/(pi-tal_r_degree);% % % sum_P=P1+P2+P3+P4+P5;% % % gF=(1/5)*(pi*n/2-pi*h/2+(pi/2-(tal_r_degree-beta_rf)/2)*h+g+gi);% % % sigma=(2/pi)*( atan(2*n/gF)-( gF/(4*n) )*log( 1+( (2*n)/g

21、F )2) );% % % lF=la+2*n*(1-sigma);% % % miu0=0.4*pi*(10(-6); % H/m% % % L2D=(Nph2)*miu0*lFe*(10(-3)*sum_P; %此处乘以10(-3)将铁心lFe:mm->m% % % Lu=L2D*(2*(lF/la)-1); %23.theta_u不对齐位置电感Theta_u_Lu();% %-theta_1位置磁化曲线% % % h=(Da/2)*sin(tal_r_degree-beta_rf-(beta_sf/2)-(Da/2+g)*sin(beta_sf/2);% % % b=(Da/2+g

22、)*cos(beta_sf/2)-(Da/2)*cos(tal_r_degree-beta_rf-beta_sf/2);% % % % b=(Da/2-g)*cos(beta_sf/2)-(Da/2)*cos(tal_r_degree-beta_rf-beta_sf/2);% % % f=sqrt(h2+b2);% % % theta=atan(h/(gi+g-b);% % % % beta1=pi/2-beta_sf/2;% % % beta1=(pi/2)-(beta_sf/2)-(beta_rf/2); %平行转子齿% % % % beta2=pi/2-(tal_r_degree-bet

23、a_rf-beta_sf/2);% % % beta2=(pi/2)-(tal_r_degree-beta_rf-(beta_sf/2)-(beta_rf/2);% % % gamma=theta-(tal_r_degree-beta_rf-beta_sf/2)-beta_rf/2;% % % if f>=gi% % % gh=(Da/2)*(cos(beta_sf/6)-cos(beta_sf/2)+g;% % % else% % % gh=(Da/2+g)*(cos(beta_sf/2-beta_sf/7)-cos(beta_sf/2)+g;% % % end% % % % w=(D

24、a/2+g)*tan(pi/Ns)-bps/2;% % % % alph=pi/2-(asin(w+bps/2)/(Ds/2-hcs)+asin(bps/2)/(Ds/2-hcs)/2;% % % % v=sqrt(Ds/2-hcs)2-(Da/2+g)2)*(tan(pi/Ns)2)-(Da/2+g);% % % hms=(Ds/2)-hcs-(Da/2+g);% % % t1=(gi-gh)/beta1;% % % t2=(h/sin(theta)-gi+g;% % % t3=(gi-f)/beta2;% % % m1=u+(v/2);% % % m2=u+(2/3)*v;% % % n1

25、=hms-m1;% % % % delta=pi/2+beta_sf/2-acos(n1/Da);% % % delta=(pi/2)-acos(n1/Da)+(beta_sf/2)*alph;% % % p1=alph*(m2)/(4*(w2)*(2*v+u)2);% % % p2_1pie=(1/(pi/2+delta)*log(gh+(pi/2+delta)*n1)/gh);% % % p2_2pie=(pi/(2*w*v)*(n12)/(2*(pi/2+delta)-gh*n1/(pi/2+delta)2)+(gh2)/(pi/2+delta)3)*log(gh+(pi/2+delta

26、)*n1)/gh);% % % p2_3pie=(pi2)/(16*(w2)*(v2)*( n14/(4*(pi/2+delta)-(gh/(pi/2+delta)*(n13/(3*(pi/2+delta)-gh*(n12)/(2*(pi/2+delta)2)+n1*(gh2)/(pi/2+delta)3-(gh2/(pi/2+delta)4)*log(pi/2+delta)*n1+gh)/gh);% % % p2=p2_1pie-p2_2pie+p2_3pie;% % % p3=(1/beta1)*log(beta1*t1+gh)/gh);% % % if f>=gi% % % b1=

27、sqrt(gi+t2)2-gi2);% % % S5=(w*v-t2*b1/4)/(w*v);% % % b2=sqrt(gi+hms-m2)2-(gi2);% % % S6=(w*v-v*b2/12-t2*b1/4)/(w*v);% % % p4=(bps-t1)/gi;% % % p5=(S52)/(theta-gamma)*log(theta*(gi+t2)/(theta*gi+gamma*t2);% % % % p6=(S62)/theta*log(theta*(gi+hms-m2)/(theta*(gi+t2);% % % p6=(S62)*(1/theta)*log(gi+hms-

28、m2)/(gi+t2);% % % gF=(1/8)*(pi/2)*n1+gh+delta*n1)+gh+(gh+beta1*t1)+2*gi+(gi*theta+gamma*t2)+(gi+t2)*theta+(gi+hms-m2)*theta);% % % else% % % S6p=1-v/(36*w*tan(pi/Ns);% % % p4=(bps-t1-t3)/gi;% % % p5=(1/beta2)*log(f+beta2*t3)/f);% % % p6=(2/pi)*(S6p2)*log(f+(pi/2)*(hms-m2)/f);% % % gF=(1/8)*(pi/2)*n1

29、+gh+delta*n1)+gh+(gh+beta1*t1)+2*gi+(f+beta2*t3)+f+(f+(pi/2)*(hms-m2);% % % end% % % p7=alph*(m24)/(4*(w2)*(2*v+u)2);% % % sum_p=p1+p2+p3+p4+p5+p6+p7;% % % n_theta1=n1+gh;% % % % xi=(pi/2)*(atan(2*n/gF)-(gF/(4*n)*log(1+(2*n/gF)2);% % % lF=la+2*n_theta1*(1-sigma);% % % L_2D=2*miu0*(lFe*(10(-3)*(Nph/2

30、)2)*sum_p;% % % L1=L_2D*(2*lF/la-1); Theta_1_L1()%-Theta_a对齐位置时的磁化曲线% % % Sg=(bps+2*g)*lFe; %气隙截面积 /mm2% % % Sts=bps*lFe; %定子极截面积/mm2% % % Str=bpr*lFe; %转子极截面积/mm2% % % Scs=hcs*lFe; %定子轭截面积/mm2% % % Scr=hcr*lFe; %转子轭截面积/mm2% % % hmr=gi; %第二气隙% % % lts=2*(Ds/2-hcs-Da/2-g);% % % ltr=2*hmr;% % % lg=2*g

31、;% % % lcs=(Ds-hcs)*pi/2;% % % lcr=(Da/2-hmr-hcr/2)*pi;% % % Bts=1.3000; %/T% % % % for kk=0:1% % % fai_2=Bts*(Sts/2)*(10(-6); %Wb% % % Btr=fai_2/(Str*0.000001/2);% % % Bg=fai_2/(Sg*0.000001);% % % Bcs=fai_2/(Scs*0.000001);% % % Bcr=fai_2/(Scr*0.000001);% % % % end% % % % syms NB% % % % for k=1:NB%

32、% % % % % % % end% % % % B=Bts;% % % Hts=Magcurv_Lagranges_DR510_50(Bts);% % % Hts=Hts*100; %单位转化为A/m% % % Htr=Magcurv_Lagranges_DR510_50(Btr);% % % Htr=Htr*100; %/A/m% % % Hg=Bg/(miu0*(104);% % % Hcs=Magcurv_Lagranges_DR510_50(Bcs);% % % Hcs=Hcs*100; % % % Hcr=Magcurv_Lagranges_DR510_50(Bcr);% % %

33、Hcr=Hcr*100; % % % sum_F=(Hts*lts+Htr*ltr+Hg*lg+Hcs*lcs+Hcr*lcr)*(10(-3);% % % % Fai=2*fai_2/(104);% % % Fai=2*fai_2;% % % % if Bts=1.3000% % % i_s=sum_F/Nph;% % % fai_s=Fai*Nph;% end% Bts=2.0500;% if Bts=2.0500% i_m=sum_F/Nph;% fai_m=Fai*Nph;% end Theta_a_is_fais(); % fai_1m=(U/omiga)*(theta_1-thet

34、a_on);% I_m=fai_1m/L1; %实际电流峰值% Im_star=km*I_m;% fai_m=fai_1m+(U-Im*Rp)/omiga)*(theta_off-theta_1);% % psi_um=% Lao=fai_s/i_s;% % Im_star=5;% i_m=Im_star;% a1=(1/fai_m)-(1/fai_s)/(1/i_m)-(1/i_s);% a0=(1/fai_s)-(a1/i_s);% W_pie=(Lao*(i_s2)-Lu*(Im_star2)/2+(a0*(Im_star-i_s)-a1*log(a1+a0*Im_star)/(a1+a

35、0*i_s)/(a02);% Tem_pie=(Ns*Nr/(4*pi)*W_pie;% while Tem_pie<=Tem% i_m=Im_star;% a1=(1/fai_m)-(1/fai_s)/(1/i_m)-(1/i_s);% a0=(1/fai_s)-(a1/i_s);% Im_star=Im_star+0.5;% W_pie=(Lao*(i_s2)-Lu*(Im_star2)/2+(a0*(Im_star-i_s)-a1*log(a1+a0*Im_star)/(a1+a0*i_s)/(a02);% end %24.theta_a对齐位置磁化曲线 %-电流及转矩计算omig

36、a=2*pi*nN/60; %转动角频率Tem=Pem*(103)/omiga; %25.额定电磁转矩 N.m% Im_star=28; %26.额定电磁转矩Tem所需的理想方波电流Im_star% I=Im_star/sqrt(2); %27.绕组电流有效值% im=I/ki; %28.实际电流峰值%-绕组平均匝长lavbw=(Da+2*g)*sin(pi/Ns)-(bps/2);bw=Keep_decimal(bw,1); %保留一位小数a=bps+bw;a=Keep_decimal(a,1); %保留一位小数R=5; %绕组圆角半径R=5mmb=la+2*R+bw;b=Keep_deci

37、mal(b,1); %保留一位小数r=R+(bw/2);r=Keep_decimal(r,1); %保留一位小数lav=2*la+2*(bps-2*R)+2*pi*r; %32.绕组平均匝长/mmlav=Keep_decimal(lav,1); %保留一位小数l=Nph*(lav*(10(-3); %33.每相绕组导线总长/mm% l=Nph*lav; %/mSa=3.94; %查表取导线截面积rou=0.0217; %电阻率Rp=rou*(l*(10(-3)/Sa; %每相绕组电阻,乘以10(-3)/omgh% % % % % % % %利用theta1位置处的磁化电流曲线,确定实际电流峰值

38、Im% % % fai_1m=(U/omiga)*(theta_1-theta_on);% % % Im=fai_1m/L1; %实际电流峰值% % % % Im=39.6% % % Im_star=km*Im; %理想方波电流% % % % Im_star=sqrt(2)*ki*Im;% % % % Im_star=28;% % % % Im=Im_star/km;% % % I=Im_star/sqrt(2);%绕组电流有效值% % % % I=Im*ki;% % % Im_star=sqrt(2)*I;% % % fai_m=fai_1m+(U-Im*Rp)/omiga)*(theta_

39、off-theta_1);% % % % psi_um=% % % Lao=fai_s/i_s;% % % % Im_star=5;% % % % i_m=Im_star;% % % i_m=Im;% % % % Im0=Im;% % % a1=(1/fai_m)-(1/fai_s)/(1/i_m)-(1/i_s);% % % a0=(1/fai_s)-(a1/i_s);% % % W_pie=(Lao*(i_s2)-Lu*(Im_star2)/2+(a0*(Im_star-i_s)-a1*log(a1+a0*Im_star)/(a1+a0*i_s)/(a02);% % % Tem_pie=(

40、Ns*Nr/(4*pi)*W_pie;% % % % % % % % % % % Sw=(1/2)*(pi/Ns)*(Ds/2-hcs)2-(Da/2+g)2)-(1/2)*bps*ds; %29.定子极间窗口面积% % % % Sw=Keep_decimal(Sw,1);% % % % J_pie=5; %预取电流密度J_pie=5A/mm2% % % % Sa_pie=I/J_pie; %30.导线规格,导线截面积% % % % Sa_pie1=Keep_decimal(Sa_pie,2);% % % % Sa=Standardizing_Sa(Sa_pie); %查表取导线截面积% %

41、% % Sa=Keep_decimal(Sa,2);% % % % % Sa=3.94; % % % % Scu=(1/2)*Nph*Sa; %每槽导体净截面积% % % % Scu=Keep_decimal(Scu,2);% % % % ks=Scu/Sw; %槽满率% % % % J=I/Sa; %31.电流密度% % % % ks1=Scu/Sw; %槽满率% % % % J1=I/Sa; %31.电流密度 % % % % J_pie=5; %预取电流密度J_pie=5A/mm2% % % % % % % while J>5.5% % % % Im=Im-0.01;% % % %

42、% % while Tem_pie<=Tem% % % % fai_1m=(U/omiga)*(theta_1-theta_on);% % % % Im=fai_1m/L1;% % % Im=Im+1; %实际电流峰值% % % % I=Im*ki;% % % % Im_star=sqrt(2)*I;% % % Im_star=km*Im; %理想方波电流% % % % % Im_star=Im_star+1;% % % I=Im_star/sqrt(2); %绕组电流有效值% % % % fai_m=fai_1m+(U-Im*Rp)/omiga)*(theta_off-theta_1)

43、;% % % i_m=Im; %实际电路峰值% % % a1=(1/fai_m)-(1/fai_s)/(1/i_m)-(1/i_s);% % % a0=(1/fai_s)-(a1/i_s);% % % W_pie=(Lao*(i_s2)-Lu*(Im_star2)/2+(a0*(Im_star-i_s)-a1*log(a1+a0*Im_star)/(a1+a0*i_s)/(a02);% % % Tem_pie=(Ns*Nr/(4*pi)*W_pie;% % % endCurrent_confirm_im_W_pie();Adapt_im_W_pie();Sps=(bps*lFe)*(10(-6

44、);Bps=fai_m/(Nph*Sps);B_delta=0.805*(bps/tal_r)*Bps; %重新校核% %5 %-绕组设计Sw=(1/2)*(pi/Ns)*(Ds/2-hcs)2-(Da/2+g)2)-(1/2)*bps*ds; %29.定子极间窗口面积Sw=Keep_decimal(Sw,1);J_pie=5; %预取电流密度J_pie=5A/mm2Sa_pie=I/J_pie; %30.导线规格,导线截面积Sa_pie1=Keep_decimal(Sa_pie,2);Sa=Standardizing_Sa(Sa_pie); %查表取导线截面积Sa=Keep_decimal(Sa,2);% Sa=3.94; Scu=(1/2)*Nph*Sa; %每槽导体净截面积Scu=Keep_decimal(Scu,2);ks=Scu/Sw; %槽满率J=I/Sa; %31.电流密度ks1=Scu/Sw; %槽满率J1=I/Sa; %31.电流密度% % % % while ks>0.5 % % % J_pie=J_pie+0.01;% % % Sa_pie=I/J_pie; %30.导线规格,导线截面积% % % Sa_pie=Keep_decimal(Sa_pie,2);% % % Sa=Standardizing_Sa(Sa_pie); %查表取导线截面积% %

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论