版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 直角三角形的边角关系1.1 锐角三角函数(1) -正切函数晋公庙中学数学组 主备人: 备课时间:2014年12月 日 授课时间: 教学目标:1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.教学重点:1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.教学难点:理解正切的意义,并用它来表示两边的比.教学过程:一、复习导课:1、关于直角三角形,你都知道哪些知识?2、直角三角形的边角有哪些关系呢?今天我们开始学
2、习:第一章 直角三角形的边角关系 1.1 锐角三角函数(1)-正切函数二、自学指导:1、自主学习:如图:梯子AB和EF哪个更陡?你是怎样判断的?你有哪些办法?(2)自学课本第三页思考:梯子AB和EF哪个更陡?你是怎样判断的?你有哪些办法?知识梳理:如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡; 如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡;如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;2、合作交流:小组讨论完成课本p3想一想:直角三角形的边与角的关系 (1) RtAB1C1和RtAB2C2有什么关系? (2) 有什么关系?(3)如果改变B2在梯子上
3、的位置(如B3C3)呢?由此你得出什么结论三、例题讲解:例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?四、随堂练习:1、如图,ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)五、课堂小结: 正切函数明确各边的名称(1)六、作业: 1. 习题1.1 知识技能第1题. 板书设计:第一章 直角三角形的边角关系1.1 锐角三角函数(1)正切函数 : tanA的值越大,梯子越陡。1.1 锐角三角函数(2) -正弦、余弦函数教学反思:1.1 锐角三角函数(2)
4、 -正弦、余弦函数晋公庙中学数学组 主备人:备课时间:2014年12月 日 授课时间:2014年 12 月 日教学目标: 1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义. 2.能够运用sinA、cosA表示直角三角形两边的比. 3.能根据直角三角形中的边角关系,进行简单的计算. 4.理解锐角三角函数的意义.教学重点: 1.理解锐角三角函数正弦、余弦的意义,并能举例说明. 2.能用sinA、cosA表示直角三角形两边的比. 3.能根据直角三角形的边角关系,进行简单的计算.教学难点: 用函数的观点理解正弦、余弦和正切.教学过程:一、复习导课:1、回顾正切函数的概念。二、自学指导:1、
5、自主学习:自学课本第7页内容:(1)正弦、余弦函数概念,(2)三角函数概念:锐角A的正切、正弦、余弦都是A的三角函数。梯子的倾斜程度sinA的值越大,梯子越陡;cosA的值越大,梯子越陡。三、四、 例题讲解例1. 如图,在RtABC中,B = 90°,AC = 200,求BC的长。解:例2、做一做:如图,在RtABC中,C=90°,cosA,AC10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达.四、随堂练习:1、在等腰三角形ABC中,AB=AC5,BC=6,求sinB,cosB,tanB.2、在ABC中,C90°,s
6、inA,BC=20,求ABC的周长和面积.3、在RtABC中, C=90°,tanA=,则sinB=_,tanB=_.4、在RtABC中,C=90°,AB=41,sinA=,则AC=_,BC=_.5、在ABC中,AB=AC=10,sinC=,则BC=_.五、课堂小结:1、 正弦、余弦函数,2、 三角函数锐角A的正切、正弦、余弦都是A的三角函数。3、 梯子的倾斜程度sinA的值越大,梯子越陡;cosA的值越大,梯子越陡。六、作业: 1. 习题1.2 知识技能第2题. 板书设计:1.1 锐角三角函数(2)-正弦、余弦函数1. 正弦、 余弦函数,2. 三角函数锐角A的正切、正弦、
7、余弦都是A的三角函数。 3 . 梯子的倾斜程度sinA的值越大,梯子越陡;cosA的值越大,梯子越陡i. 正切函数 图表 11、正切函数教学反思:1.2 30°、45°、60°角的三角函数值晋公庙中学数学组 主备人:备课时间:2014年12月 日 授课时间:2014年 12 月 日学习目标: 1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义. 2.能够进行30°、45°、60°角的三角函数值的计算. 3.能够根据30°、45°、60&
8、#176;的三角函数值说明相应的锐角的大小.学习重点: 1.探索30°、45°、60°角的三角函数值. 2.能够进行含30°、45°、60°角的三角函数值的计算. 3.比较锐角三角函数值的大小.学习难点: 进一步体会三角函数的意义.学习过程:一、导入新课:观察一副三角尺,其中有几个锐角?它们分别等于多少度?二、自学指导1、sin30°等于多少呢?你是怎样得到的?与同伴交流.2、cos30°等于多少?tan30°呢?3、小组讨论完成下列问题:我们求出了30°角的三个三角函数值,还有两个特殊角45&
9、#176;、60°,它们的三角函数值分别是多少?你是如何得到的?结论:三角函数角度sincotan30°45°60°三、例题讲解:例1计算:(1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.解:例2一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)四、随堂练习:1.计算:(1)sin60°-tan45°; (2)
10、cos60°+tan60°;(3) sin45°+sin60°-2cos45°; ;(+1)-1+2sin30°-; (1+)0-1-sin30°1+()-1;2.某商场有一自动扶梯,其倾斜角为30°.高为7 m,扶梯的长度是多少?五、课堂小结:三角函数角度sincotan30°45°60°六、作业: 1. 习题1.3 知识技能第1题. 板书设计: 1.2 30°、45°、60°角的三角函数值三角函数角度sincotan30°45°60
11、°教学反思:1.3 三角函数的计算(1)晋公庙中学数学组 主备人:备课时间:2014年12月 5 日 授课时间:2014年 12 月 日教学目标:1. 掌握利用计算器求任意一个锐角的三角函数值的方法。2. 进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.教学重点:1.利用计算器求任意一个锐角的三角函数值。2.进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.教学难点:进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数值计算的实际问题.教学过程:一、导入新课: 1、上节课我们根据三角函数的定义及特殊直角三角形中三边的特殊关系
12、得到 30°、45°、60°的三角函数值,你还记得它们的值吗?2、你知道sin16°等于多少吗?我们可以借助科学计算器求锐角的三角函数值.怎样用科学计算器求锐角的三角函数值呢?二、自学指导利用科学计算器求锐角的三角函数值已知角度求三角函数,要用到、 键例如求16°角的三种函数值。例如:求sin160,cos420, tan850和sin720 3825的按键顺序如下:按 键 顺 序显 示 结 果Sin160Cos420tan850sin720 3825三、 例题讲解:例1.如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶
13、的路线与水平面的夹角为=160,那么缆车垂直上升的距离是多少? 当缆车继续从点B到达点D时,它又走过了200m.缆车由点B到点D的行驶路线与水平面的夹角为=420,由此你还能计算什么? 四、 课堂练习:1.用计算器求下列各式的值:(1)sin56°, (2) sin15°49,(3)cos20°, (4)tan29°,(5)tan44°5959, (6)sin15°+cos61°+tan76°.2 一个人由山底爬到山顶,需先爬400的山坡300m,再爬300 的山坡100m,求山高(结果精确到0.01m).五、课堂
14、小结:1、怎样利用计算器求一个锐角的三角函数值?2、如何利用直角三角形中的边角关系解决实际问题?六、作业: 1. 习题1.4 问题解决第4题. 板书设计:1.3 三角函数的计算(1)1) 教学反思:1.3 三角函数的计算(2)晋公庙中学数学组 主备人:备课时间:2014年12月 5 日 授课时间:2014年 12 月 日教学目标:1. 掌握利用计算器根据锐角的三角函数值求这个锐角的方法。2. 在求锐角的三角函数值与根据锐角的三角函数值求锐角的过程中,体会逆向思维的数学思想。教学重点:1. 利用计算器根据锐角的三角函数值求这个锐角。2. 进行有关三角函数值的计算.能够运用计算器辅助解决含三角函数
15、值计算的实际问题.教学难点: 利用计算器根据锐角的三角函数值求这个锐角。教学过程:一、 导入新课:随着人民生活水平的提高,农用小轿车越来越多,为了交通安全,某市政府要修建10 m高的天桥,为了方便行人推车过天桥,需在天桥两端修建40m长的斜道.(如图所示) 这条斜道的倾斜角是多少? 要解决这个问题,我们可以借助于科学计算器来完成.这节课,我们就来学习如何用科学计算器由锐角三角函数值求相应锐角的大小.二、自学指导1、用计算器由锐角三角函数值求相应锐角的大小.已知三角函数求角度,要用到、 键的第二功能 “sin-1,cos-1,tan-1”和 键 例如:已知sinA=0.9816,求锐角A。 按键
16、顺序 已知 sinA = 0.9816,求锐角A 已知cosA 0.8607,求锐角A; 已知tanA = 0.1890,求锐角A;已知tanA 56.78,求锐角A. 上表的显示结果是以“度”为单位的.再按 键即可显示以“度、分、秒”为单位的结果. 解答:sinA=0.25.按键顺序为,显示结果为14.47751219°,再按 键可显示14°2839.所以A=14°2839.三、例题讲解:例1如图,工件上有-V形槽.测得它的上口宽加20 mm深19.2mm。求V形角(ACB)的大小.(结果精确到1°) 解:tanACD=0.5208, ACD27.5&
17、#176;, ACB2ACD2×27.5°55°.例2如图,一名患者体内某重要器官后面有一肿瘤.在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官,射线必须从侧面照射肿瘤.已知肿瘤在皮下6.3 cm的A处,射线从肿瘤右侧9.8cm的B处进入身体,求射线的入射角度, 解:如图,在RtABC中, AC6.3 cm,BC=9.8 cm, tanB=0.6429. B32°4413. 因此,射线的入射角度约为32°4413.四、课堂练习: 1.已知sin0.82904.求的大小. 2.一梯子斜靠在一面墙上.已知梯长4 m,梯子位于地面上的一端
18、离墙壁2.5 m,求梯子与地面所成的锐角. 五、课堂小结:本节课我们学习了用计算器由三角函数值求相应的锐角的过程,进一步体会三角函数的意义.并且用计算器辅助解决含有三角函数值计算的实际问题.六、作业: 1. 习题1.5 知识技能第1题. 板书设计:1.3 三角函数的计算(2) 1. 用计算器由三角函数值求相应的锐角2) 教学反思:1.4 解直角三角形晋公庙中学数学组 主备人:备课时间:2014年12月 5 日 授课时间:2014年 12 月 日教学目标:1. 根据题目的条件借助直角三角形的相关知识求解直角三角形。2. 能够把实际问题转化为数学问题,能够借助三角函数解决实际问题。教学重点:根据直
19、角三角形的相关知识求解直角三角形。教学难点:能够把实际问题转化为数学问题,能够借助三角函数解决实际问题。教学过程:一、导入新课:问题: 要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角a一般要满足50°a75°.现有一个长6m的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1m)?(2)当梯子底端距离墙面2.4m时,梯子与地面所成的角a等于多少(精确到1°)?这时人是否能够安全使用这个梯子?二、自学指导问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的距离是使用这个梯子所能攀到的最大高度可以归结为:在Rt ABC
20、中,已知A75°,斜边AB6,求A的对边BC的长对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的角a的问题,可以归结为:在RtABC中,已知AC2.4,斜边AB6,求锐角a的度数三、例题讲解:例1. 在图中的RtABC中,(1)根据A75°,斜边AB6,你能求出这个直角三角形的其他元素吗?例2.如图,在RtABC中,C90°,AC = , BC = . 解这个直角三角形。四、课堂练习:如图,在RtABC中,B35°,b=20,解这个直角三角形(精确到0.1)五、课堂小结:解直角三角形:在直角三角形中,由已知元素求未知元素的过程事实上,在直
21、角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (2)两锐角之间的关系(3)边角之间的关系六、作业: 解决有关比萨斜塔倾斜的问题设塔顶中心点为B,塔身中心线与垂直中心线的夹角为A,过B点向垂直中心线引垂线,垂足为点C(如图),在RtABC中,C90°,BC5.2m,AB54.5m板书设计:1.4 解直角三角形解直角三角形:在直角三角形中,由已知元素求未知元素的过程在解直角三角形的过程中,一般要用到下面一些关系:(1)三边
22、之间的关系 (2)两锐角之间的关系(3)边角之间的关系3) 教学反思:1.4 解直角三角形练习晋公庙中学数学组 主备人:备课时间:2014年12月 5 日 授课时间:2014年 12 月 日教学目标:1. 根据题目的条件借助直角三角形的相关知识求解直角三角形。2. 能够把实际问题转化为数学问题,能够借助三角函数解决实际问题。教学重点:根据直角三角形的相关知识求解直角三角形。教学难点:能够把实际问题转化为数学问题,能够借助三角函数解决实际问题。教学过程:一、 导入新课:在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元
23、素求出其余的三个元素在直角三角形中,由已知元素求未知元素的过程,我们称之为解直角三角形解直角三角形常用的关系有哪些?二、例题讲解:例. 在RtABC中,C90°,A,B,C的对边分别为a,b,c,根据下列条件解直角三角形;(1)a = 30 , b = 20 ;(2) B72°,c = 14.三、课堂练习: 1、在RtABC中,C90°,A,B,C的对边分别为a,b,c,根据下列条件解直角三角形;(1)a = 19 ,c = 192 ;(2) a = 6 2,b = 66.四、课堂小结:解直角三角形:在直角三角形中,由已知元素求未知元素的过程事实上,在直角三角形的
24、六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (2)两锐角之间的关系(3)边角之间的关系五、作业: 1. 习题1.5知识技能第2题.2. 习题1.5问题解决第3题.如图,工件上有-V形槽.测得它的上口宽加20 mm深19.2mm。求V形角(ACB)的大小.(结果精确到1°) 板书设计: 1.4 解直角三角形练习在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (2)两锐角之间的关系(3)边角之间的关系4) 教
25、学反思:1.5 三角函数的应用晋公庙中学数学组 主备人:备课时间:2014年12月 5 日 授课时间:2014年 12 月 日教学目标:1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.教学重点:1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用. 2.发展学生数学应用意识和解决问题的能力.教学难点:根据题意,了解有关术语,准确地画出示意图教学过程:一、导入新课:海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏
26、西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗? 二、自学指导1、 问题中的方位,在平面图形中是如何规定的?首先我们可将小岛A确定,货轮B在小岛A的南偏西55°的B处,C在B的正东方,且在A南偏东25°处.示意图如下2、货轮要向正东方向继续行驶,有没有触礁的危险,由谁来决定?根据题意,小岛四周10海里内有暗礁,那么货轮继续向东航行的方向如果到A的最短距离大于10海里,则无触礁的危险,如果小于10海里则有触礁的危险.A到BC所在直线的最短距离为过A作ADBC,D为垂足,即
27、AD的长度.我们需根据题意,计算出AD的长度,然后与10海里比. 三、例题讲解:例1. 如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)例2. 某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.0l m)四、课堂练习:1.如图,一灯柱AB被一钢绳CD固定,CD与地面成400夹角,且DB=5m,在C点上方2m处加固另一条钢绳ED,那么钢绳ED的长度为多少?(结果精确到0.1m)2.如图,水库大坝的截面是梯形ABCD.坝顶AD6m,坡长CD8m.坡底BC30m,ADC=135°. (1)求ABC的大小: (2)如果坝长100 m.那么建筑这个大坝共需多少土石料?(结果精确到0.01 m3)五、课堂小结:本节
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际商品代理装卸合同
- 电视剧特技演员劳动合同
- 影印和装订服务合同
- 应收账款质押合同借款方示范文本
- 简单版小产权房屋买卖合同格式
- 第19课 大雁归来 第1课时 公开课一等奖创新教学设计-【课堂无忧】新课标同步核心素养课堂
- 《气动成型》课件
- 25 挑山工 表格式 公开课一等奖创新教学设计
- 第五单元《乡土中国》调查汇报会 公开课一等奖创新教案统编版高中语文必修上册
- 望诊在护理中的作用
- 【小学语文中高年级单元整体设计的实践探究2000字(论文)】
- 全国清华大学版信息技术七年级下册第2单元第4课《动物的力量-认识高效运算的函数》教学设计
- 2023年江西飞行学院招聘考试真题
- 2024入团积极分子入团考试题库(含答案)
- 2024收购稻草合同范本
- QBT 2739-2005 洗涤用品常用试验方法 滴定分析 (容量分析)用试验溶液的制备
- 气胸护理查房2021
- 五十六个民族之乌孜别克族介绍
- 国家开放大学《计算机网络》课程实验报告实验六-计算机网络综合性实-
- 售后服务方案及运维方案
- 大学生生涯发展展示 (第二版)
评论
0/150
提交评论