版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级八年级 上册上册11.3 多边形及其内角和多边形及其内角和 (第(第1课时)课时)课件说明课件说明 本课是在学生已经学习了三角形的有关概念和性质本课是在学生已经学习了三角形的有关概念和性质 的基础上,利用学习三角形的经验方法进一步研究的基础上,利用学习三角形的经验方法进一步研究 多边形的有关概念和性质多边形的有关概念和性质 学习目标:学习目标:1了解多边形的有关概念,感悟类比方法的价值了解多边形的有关概念,感悟类比方法的价值2探索并证明多边形内角和公式,体会化归思想和探索并证明多边形内角和公式,体会化归思想和 从具体到抽象的研究问题方法从具体到抽象的研究问题方法3运用多边形内角和公式解决
2、简单问题运用多边形内角和公式解决简单问题 学习重点:学习重点: 多边形内角和公式的探索与证明过程多边形内角和公式的探索与证明过程课件说明课件说明创设情境,导入新知创设情境,导入新知问题你能从图中想象出几个由一些线段围成的图问题你能从图中想象出几个由一些线段围成的图 形吗?形吗?创设情境,导入新知创设情境,导入新知多边形的定义:多边形的定义: 在平面内,由一些线段首尾顺次相接组成的封闭图在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形形叫做多边形. .创设情境,导入新知创设情境,导入新知如图,从五边形如图,从五边形ABCDE 的顶点的顶点A 出发共有几条对出发共有几条对 角线?角线?AB
3、CDE凸四边形凸四边形创设情境,导入新知创设情境,导入新知观察你能说出这两个图形的异同点吗?观察你能说出这两个图形的异同点吗?ABCDBDCA创设情境,导入新知创设情境,导入新知想一想正方形的边、角有什么特点?想一想正方形的边、角有什么特点?各个角都相等,各条边都相等的多边形叫做正多边形各个角都相等,各条边都相等的多边形叫做正多边形回忆长方形、正方形的内角和等于回忆长方形、正方形的内角和等于_._.360创设情境,导入新知创设情境,导入新知思考任意一个四边形的内角和是否也等于思考任意一个四边形的内角和是否也等于360 呢?呢?动手操作,探究新知动手操作,探究新知探究你能利用三角形内角和定理证明
4、你的结论探究你能利用三角形内角和定理证明你的结论吗?吗?证明:证明:连接连接AC, BAD + +B + +BCD + +D = =(BAC + +BCA + +B) + + (DAC + +DCA + +D),= = 180 + + 180 = = 360 ABCD动手操作,探究新知动手操作,探究新知探究你能利用三角形内角和定理证明你的结论探究你能利用三角形内角和定理证明你的结论 吗?吗?从四边形的一个顶点出发,从四边形的一个顶点出发,可以作可以作_条对角线,它们将条对角线,它们将四边形分为四边形分为个三角形,个三角形,四边形的内角和等于四边形的内角和等于180_=_=122360ABCDA
5、BCDE动手操作,探究新知动手操作,探究新知探究类比前面的过程,你能探索五边形的内角和探究类比前面的过程,你能探索五边形的内角和 吗?六边形呢?吗?六边形呢?如图,从五边形的一个顶点如图,从五边形的一个顶点出发,可以作出发,可以作条对角线,它条对角线,它们将五边形分为们将五边形分为_个三角形,个三角形,五边形的内角和等于五边形的内角和等于 180= =233540动手操作,探究新知动手操作,探究新知如图,从六边形的一个顶点出发,可以作如图,从六边形的一个顶点出发,可以作_条条 对角线,它们将六边形分为对角线,它们将六边形分为_个三角形,六边形的个三角形,六边形的 内角和等于内角和等于180_=
6、_=_344720CABDEF从从n 边形的一个顶点出发,可以作(边形的一个顶点出发,可以作(n - -3)条对角)条对角线,它们将线,它们将n 边形分为(边形分为(n - -2)个三角形,这()个三角形,这(n - -2)个三角形的内角和就是个三角形的内角和就是n 边形的边形的内角内角和,所以和,所以,n 边形边形的内角和等于(的内角和等于(n - -2)180归纳总结,获得新知归纳总结,获得新知思考你能从四边形、五边形、六边形的内角和的思考你能从四边形、五边形、六边形的内角和的 研究过程获得启发,发现多边形的内角和与边数的关系研究过程获得启发,发现多边形的内角和与边数的关系 吗?吗?能证明
7、你发现的结论吗?能证明你发现的结论吗?n 边形边形六边形六边形五边形五边形四边形四边形三角形三角形多边形内角和多边形内角和分割出三角分割出三角形的个数形的个数从多边形的一个顶点从多边形的一个顶点引出的对角线条数引出的对角线条数图形图形边数边数归纳总结,梳理新知归纳总结,梳理新知03 -3 = =4 -3 = =5 -3 = =6 -3 = =n -3 1233 -2 = = 14 -2 = = 25 -2 = = 3 6 -2 = = 4 n -2 ( n -2 )180180360 5407201 4408动脑思考,例题解析动脑思考,例题解析 例例1 填空:填空:(1)十边形的内角和为)十边
8、形的内角和为 度度(2)已知一个多边形的内角和为)已知一个多边形的内角和为1 080,则它的边数,则它的边数 为为_解:解:如图,四边形如图,四边形ABCD 中中, A + +C = =180 A + +B + +C + +D = =(4 - 2)180 =360,B + +D = =360- -(A + + C) = =360- 180 = =180 动脑思考,例题解析动脑思考,例题解析例例2如果一个四边形的一组对角互补,那么另一如果一个四边形的一组对角互补,那么另一组对角有什么关系?组对角有什么关系?ABCD如果四边形的一组对角互补,那么另一组对角也互补如果四边形的一组对角互补,那么另一组对角也互补. .(1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容? (2)我们是怎样得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度搬家服务合同模板:搬家服务收费标准及流程规范2篇
- 专利行业知识产权保护总结
- 班主任第二学期工作总结育人育心礼仪教育成果显著
- 《几何稳定性分析》课件
- 二零二五年度建筑排水工程施工与维护合同(GF)2篇
- 2025年度冲孔桩机设备操作与人员职责规范合同3篇
- 国有企业岗位合同
- 国际房地产合作协议书(2篇)
- 重庆中医药学院《运筹学A(二)》2023-2024学年第一学期期末试卷
- 二零二五年度建筑砂浆供应商质量保障采购合同范本3篇
- 云仓存储合同范本
- NBT 47013.10-2015 承压设备无损检测 第10部分:衍射时差法超声检测
- 曝气机安装方案
- 机电传动单向数控平台(矿大)
- 全国职业院校技能大赛中职组电子电路装调与应用赛项评分表
- 2024年西藏初中学业水平考试生物试题(原卷版)
- 北外丁往道《英语写作手册》教案
- 履带吊和汽车吊荷载表
- MOOC 电机与拖动-北京信息科技大学 中国大学慕课答案
- 压缩空气气体管道吹扫试压专项方案
- 2021年海南省公务员考试《行测》真题和答案解析
评论
0/150
提交评论