版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高强度灰铸铁熔炼技术作者:原晓雷 张守全 信息来源:长城须崎铸造股份有限公司 2006-2-12【摘要】本文介绍了在电炉熔炼过程中,如何在较高的碳当量和较好的机加工性能要求的条件下获得高强度灰铸铁的熔炼技术,以及如何对材料的微量元素进行控制。关键词:灰铸铁 碳当量 力学性能 加工性能 微量元素长城须崎铸造股份有限公司(简称CSMF)传统的灰铸铁熔炼控制方向是低碳高强度铸铁(C:2。3)这样的材料虽然能够满. 【摘要】本文介绍了在电炉熔炼过程中,如何在较高的碳当量和较好的机加工性能要求的条件下获得高强度灰铸铁的熔炼技
2、术,以及如何对材料的微量元素进行控制。 关键词:灰铸铁 碳当量 力学性能 加工性能 微量元素 城须崎铸造股份有限公司(简称CSMF)传统的灰铸铁熔炼控制方向低碳高强度铸铁(C:2.73.0,Si:2.02.3,Mn:0.91.3)样的材料虽然能够满足材料机械性能的要求,但其铸造性能、加工性能却较差,随着公司市场开发拓展,越来越多的高难度、高技术质量要求的铸造产品纳入CSMF的生产序列,特别是CSMF用工频电炉熔炼工艺取代冲天炉熔炼工艺,如何在电炉熔炼条件下获得高碳当量高强度铸铁,满足顾客的定货要求,是我们当时的一个研究课题,本文叙述了电炉熔炼的条件下高强度灰铸铁的生产技术。 1 影响材料性能的
3、因素 1.1 碳当量对材料性能的影响 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量(CE=C+1/3Si)较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。
4、1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti
5、的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:2535%,废钢:3035%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制数。因此炉料配比对铸铁材料的机械性能有着直接的影响,是熔炼控制的重点。 1.4微量元素对材料性能的影响 以往我们在熔炼过程中只注意常规五大元素对铸铁材质的影响,而对其它一
6、些微量元素的作用仅仅只是一个定性的认识,却很少对他们进行定量的分析讨论,近年来,由于铸造技术的进步,熔炼设备也在不断的更新,冲天炉已逐渐被电炉所代替。电炉熔炼固然有其冲天炉不可比拟的优点,但电炉熔炼也丧失了冲天炉熔炼的一些优点,这样一些微量元素对铸铁的影响也就反映出来。由于冲天炉内的冶金反应非常强烈,炉料是处于氧化性很强的气氛中,绝大部分都被氧化,随炉渣一起排出,只有一少部分会残留在铁水中,因此一些对铸件有不利影响的微量元素通过冲天炉的冶金过程,一般不会对铸铁形成不利影响。在冲天炉的熔炼过程中,焦炭中的氮和空气中的氮气(N2)在高温下,一部分分解会以原子的形式溶入铁水中,使得铁水中的氮含量相对
7、很高。 据统计自电炉投产以来,由于铅含量高造成的废品和因含铅量太高无法调整而报废的铁水不下百吨,而因含氮量不足造成的不合格品数量也相当高,给公司造成很大的经济损失。 在我们多年的电炉熔炼经验和理论基础上,我认为在电炉熔炼过程中重点微量元素主要有N、Pb、Ti,这些元素对灰铸铁的影响主要有以下几方面:铅 当铁水中的铅含量较高时(>20PPm),尤其是与较高的含氢量相互作用,在厚大断面的铸件很容易形成魏氏石墨,这是因为树脂砂的保温性能好,铁水在铸型中冷却较慢,(对厚大断面这种倾向更为明显,)铁水处于液态保温时间较长,由于铅和氢的作用使铁水凝固比较接近于平衡状态下的凝固条件。当这类铸件凝固完毕
8、,继续冷却时,奥氏体中的碳要析出,成为固态下的二次石墨。在正常情况下,二次石墨仅使共晶石墨片增厚,这对力学性能不会产生很大影响。但含氮和氢量高时,会使奥氏体同一定晶面上石墨表面能降低,使二次石墨沿着奥氏体一定晶面长大,伸入金属基体中,在显微镜下观察,在片状石墨片的侧面长出许多象毛刺一样的小石墨片,俗称石墨长毛,这就是魏氏石墨及形成原因。在铸铁中的铝能促使铁液吸氢,而增加其氢含量,因此铝对魏氏石墨的形成,也有间接的影响。 当铸铁中出现魏氏石墨时,对其力学性能影响很大,尤其是强度、硬度,严重时可降低50%左右。 魏氏石墨有以下金相特征: 1)在100倍的显微照片上,粗大的石墨片上附着许多刺状小石墨
9、片,即为魏氏石墨。 2)同共晶片状石墨关系是相互连接的。 3)常温下成为魏氏石墨网络延伸入基体中,就成为基体脆弱面,会显著降低灰铸铁的力学性能。但从断面看,断裂裂纹仍是沿共晶片状石墨扩展的。如图1所示: 图1 魏氏石墨 ×100氮 适量的氮能促进石墨形核,稳定珠光体,改善灰铸铁组织,提高灰铸铁的性能。 氮对灰铸铁的影响主要有两方面,一是对石墨形态的影响,另一方面是对基体组织的影响。 氮对石墨形态的作用是一个非常复杂的过程。主要表现在:石墨表面吸附层的影响和共晶团尺寸大小的影响。由于氮在石墨中几乎不溶解,因此,在共晶凝固过程中氮不断吸附在石墨生长的前沿和石墨两侧,导致石墨在析出过程中,
10、其周围浓度增高,尤其在石墨伸向铁水中的尖端时,影响液 固界面上的石墨生长。氮在共晶生长过程中石墨片尖端和两侧氮的浓度分布存在明显的差别。由于氮原子在石墨表面上的吸附层能够阻碍碳原子向石墨表面的扩散。石墨前沿的氮浓度比两侧高时,石墨长度方向的生长速度降低,相比之下,侧向生长就变得容易些,其结果使石墨变短、变粗。同时由于石墨生长过程中总会存在缺陷,氮原子的一部分被吸附在缺陷位置而不能扩散,将会在石墨长大的前沿上局部非对称倾斜晶界,其余部分仍按原方向长大,从而石墨产生分枝,石墨分枝的增加,是石墨变短的另一个原因。这样以来,由于石墨组织的细化,减小了其对基体组织的割裂作用,有利于铸铁性能的提高。 氮对
11、基体组织的影响作用,一是由于它是珠光体稳定元素,氮含量的增加,使铸铁共析转变温度降低。因此,当灰铸铁中含有一定量的氮时,能使共析转变过冷度增加,从而细化珠光体。另一方面是由于氮的原子半径比碳和铁都小,可以作为间隙原子固溶于铁素体和渗碳体中,使其晶格产生畸变。由于上述两方面的原因,氮能对基体产生强化作用。 虽然氮可以提高灰铸铁的性能,但是,当其超过一定量时,会产生氮气孔和显微裂纹如图2所示,所以对氮的控制应是在一定范围内的控制。 一般为70120PPm,当超过180PPm时铸铁的性能将会急剧下降。 图2 氮气孔Ti在铸铁中是属于一种有害元素,究其原因是钛与氮的亲和力较强,当灰铸铁中的钛含量较高时
12、无益于氮的强化作用,首先与氮形成TiN化合物,这就减少了固溶于铸铁中的自由氮,事实上正是由于这种自由氮对灰铸铁起着固溶强化的作用。因此钛含量的高低间接的影响着灰铸铁的性能。 2 熔炼控制技术 2.1 材料化学成分的选择 通过上述分析,对化学成分的控制是熔炼技术中非常重要的,它是熔炼控制的基础。所以合理的化学成分,是保证材料性能的基础。通常对于高强度铸铁(抗拉强度300N/mm2)的成分控制主要有等。C、Si、Mn、P、S、Cu、Cr、Pb、N 表1 GB牌号化学成分% CSiMnPSCuCrPbN3.03.31.51.90.60.9<0.06<0.10.40.8<0.12&l
13、t;20ppm70120ppm 2.2炉料配比的确定 表2 炉料配比% 生铁废钢回炉铁5205070其余2.3微量元素的控制技术 实际过程控制中,根据对炉料的分析,确认铅的来源主要是废钢,所以对原材料中铅的控制主要是要对废钢中Pb夹物的控制,通常铅含量控制在15ppm以下。如果当原铁水中含铅量>20ppm时,在进行孕育处理时进行特殊变质处理。 由于Ti主要来源于生铁,所以对Ti的控制主要是控制生铁,这样一方面是在采购时要对生铁中的Ti含量提出严格要求,通常要求生铁含钛量为:Ti<0.8%,另一方面是要根据生铁的含钛量及时调整使用量。 主要来源于增碳材料和废钢中,因此对N的控制主要是
14、控制增碳材料和废钢,但是正象上面所述过低过高对灰铸铁的性能都有不利的一面,因此对N的含量控制范围一般为:70120ppm,但是N的含量还要和Ti含量有一个合理的匹配,通常N与Ti的关系为:N:Ti=1:3.42即0.01%的Ti可吸收30PPm的氮,生产时一般建议氮量为:N=0.0060.01+Ti/3.42。图3为在灰铸铁中钛与氮的关系。 图3 氮与钛的关系2.4熔炼工艺的控制技术 1)孕育技术 孕育处理目的在于促进石墨化,降低白口倾向,降低端面敏感性;控制石墨形态,消除过冷石墨;适当增加共晶团数和促进细片状珠光体的形成,从而达到改善铸铁的强度性能和其它性能的目的。在实际过程控制中,需要控制
15、的参数如下: 表3 孕育处理参数孕育剂种类粒度加入量孕育方式孕育温度孕育有效时间75Si-Fe350.30.6二极孕育1420146010分钟铁液温度对孕育的影响及控制铁液温度对孕育的影响显著。在一定的范围内提高铁液的过热温度并保持一定时间,可以使铁液中残存着未溶的石墨质点,完全溶入铁液中,以消除生铁的遗传影响,充分发挥孕育剂的孕育作用,提高铁水受孕育能力。过程控制中,对过热温度提高到15001520,对孕育处理温度控制在14201450。 孕育剂的粒度是孕育剂状况的重要指标,对孕育效果有很大影响。粒度过细,易于分散或被氧化进入溶渣而失去作用,粒度太大,孕育剂熔化或溶解不尽,不仅不能充分发挥孕
16、育作用,反而会造成偏析、硬点、过冷石墨等缺陷。因而对孕育剂的粒度尽量控制在25mm。保证孕育效果。 过程控制中孕育工艺主要在孕育槽孕育,这样对一包浇注的铸件,基本可以在孕育衰退前浇注结束。但对于比较大的件和双浇包浇注的件,不能满足要求。因而采用了晚期孕育方法:即在浇注铸件之前,在浇包中进行浮硅孕育(孕育量为0.1%),这样减小了或不存在孕育衰退,提高了孕育效果。 2)合金化处理 合金化处理向普通铸铁中加入少量的合金元素,提高灰铸铁的力学性能。在熔炼过程控制中,对合金的加入,主要是针对顾客要求淬火的件和导轨比较厚大的件,主要加入的合金元素及加入量。如表4所示: 表4 常用合金元素及含量 Cu S
17、n Cr 0.40.7% 0.050.08% 0.10.2%这样在一定程度上保证了由于CE值的提高造成性能的下降,而且对淬火件来说,提高了淬火时的淬透性。保证了淬火深度。1) 对熔炼过程的温度控制如图4: 图4电炉熔炼过程曲线图中OA段是投料熔化过程,这个阶段重点控制的加料顺序,按废钢、机铁、生铁的先后顺序进行加料,为了减少合金元素的烧损,铁合金应在最后加入,当冷料全部化清后升温至1450即A点,。如果低于1450时则有增碳剂或铁合金不完全溶解的危险。 在AB段,应做如下处理: 测温; 扒渣; 取样分析化学成分; 利用热光谱仪对常规元素和微量元素进行分析; 取三角试片测CW值; 根据各种检测结
18、果对铁水进行调整后,继续送电10分钟后重新取样分析,确认所有数据正常后继续升温至1500左右,即C点。在CD段,让铁水静置5至10分钟后取三角试片测试CW值,测温后准备出铁。 三角试片的控制 对于不同牌号,确定不同三角试块的白口(CW)控制范围,结合炉前成份分析确定铁水质量。 3 结论 上述灰铸铁的熔炼技术,自1996年至2003年间在CSMF已成功的应用了8年,铸件的CE控制在3.63.9的前提下,不论是抗拉强度指标,还是实体硬度指标(特别是部分机床件导轨硬度)都满足要求,很大程度上提高了铸件的切削性能。经证明此项技术已是一种定型的技术,其控制要点如下: 3.1 材料化学成分的控制 3.2
19、炉料配比的确定 3.3 微量元素的控制技术 3.4 孕育处理工艺的控制 3.5 合金化处理 3.6 对熔炼过程的温度控制 3.7 三角试片的控制 参考资料0. 铸造合金及其熔炼 机械工业出版社 氮合金元素 际密烘金属有限公司 密烘技术安装手册 国际密烘金属有限公司 · 相关主题关键字: · 灰铸铁· 熔炼· 性能· 控制 高强度灰铸铁熔炼技术原作者:长城须崎铸造股份有限公司 原晓雷 张守全 出处:OneTwoFree.Sp【论文摘要】【摘要】本文介绍了在电炉熔炼过程中,如何在较高的碳当量和较好的机加工性能要求的条件下获得
20、高强度灰铸铁的熔炼技术,以及如何对材料的微量元素进行控制。 关键词:灰铸铁 碳当量 力学性能 加工性能 微量元素 长城须崎铸造股份有限公司(简称CSMF)传统的灰铸铁熔炼控制方向是低碳高强度铸铁(C:2.73.0,Si:2.02.3,Mn:0.91.3)这样的材料虽然能够满足材料机械性能的要求,但其铸造性能、加工性能却较差,随着公司市场开发拓展,越来越多的高难度、高技术质量要求的铸造产品纳入CSMF的生产序列,特别是CSMF用工频电炉熔炼工艺取代冲天炉熔炼工艺,如何在电炉熔炼条件下获得高碳当量高强度铸铁,满足顾客的定货要求,是我们当时的一个研究课题,本文叙述了电炉熔炼的条件下高强度灰铸铁的生产
21、技术。 1 影响材料性能的因素 1.1 碳当量对材料性能的影响 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量(CE=C+1/3Si)较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料
22、性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其
23、中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:2535%,废钢:3035%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制参数。因此炉料配比对铸铁材料的机械性能有着直接的影响,是熔炼控制的重点。 1.4微量元素对材料性能的影响 以往我们在熔炼过程中只注意常规五大元素
24、对铸铁材质的影响,而对其它一些微量元素的作用仅仅只是一个定性的认识,却很少对他们进行定量的分析讨论,近年来,由于铸造技术的进步,熔炼设备也在不断的更新,冲天炉已逐渐被电炉所代替。电炉熔炼固然有其冲天炉不可比拟的优点,但电炉熔炼也丧失了冲天炉熔炼的一些优点,这样一些微量元素对铸铁的影响也就反映出来。由于冲天炉内的冶金反应非常强烈,炉料是处于氧化性很强的气氛中,绝大部分都被氧化,随炉渣一起排出,只有一少部分会残留在铁水中,因此一些对铸件有不利影响的微量元素通过冲天炉的冶金过程,一般不会对铸铁形成不利影响。在冲天炉的熔炼过程中,焦炭中的氮和空气中的氮气(N2)在高温下,一部分分解会以原子的形式溶入铁
25、水中,使得铁水中的氮含量相对很高。 据统计自电炉投产以来,由于铅含量高造成的废品和因含铅量太高无法调整而报废的铁水不下百吨,而因含氮量不足造成的不合格品数量也相当高,给公司造成很大的经济损失。 在我们多年的电炉熔炼经验和理论基础上,我认为在电炉熔炼过程中重点微量元素主要有N、Pb、Ti,这些元素对灰铸铁的影响主要有以下几方面: 铅 当铁水中的铅含量较高时(>20PPm),尤其是与较高的含氢量相互作用,在厚大断面的铸件很容易形成魏氏石墨,这是因为树脂砂的保温性能好,铁水在铸型中冷却较慢,(对厚大断面这种倾向更为明显,)铁水处于液态保温时间较长,由于铅和氢的作用使铁水凝固比较接近于平衡状态下
26、的凝固条件。当这类铸件凝固完毕,继续冷却时,奥氏体中的碳要析出,成为固态下的二次石墨。在正常情况下,二次石墨仅使共晶石墨片增厚,这对力学性能不会产生很大影响。但含氮和氢量高时,会使奥氏体同一定晶面上石墨表面能降低,使二次石墨沿着奥氏体一定晶面长大,伸入金属基体中,在显微镜下观察,在片状石墨片的侧面长出许多象毛刺一样的小石墨片,俗称石墨长毛,这就是魏氏石墨及形成原因。在铸铁中的铝能促使铁液吸氢,而增加其氢含量,因此铝对魏氏石墨的形成,也有间接的影响。 当铸铁中出现魏氏石墨时,对其力学性能影响很大,尤其是强度、硬度,严重时可降低50%左右。 魏氏石墨有以下金相特征: 1)在100倍的显微照片上,粗
27、大的石墨片上附着许多刺状小石墨片,即为魏氏石墨。 2)同共晶片状石墨关系是相互连接的。 3)常温下成为魏氏石墨网络延伸入基体中,就成为基体脆弱面,会显著降低灰铸铁的力学性能。但从断面看,断裂裂纹仍是沿共晶片状石墨扩展的。如图1所示: 图1 魏氏石墨 ×100氮 适量的氮能促进石墨形核,稳定珠光体,改善灰铸铁组织,提高灰铸铁的性能。 氮对灰铸铁的影响主要有两方面,一是对石墨形态的影响,另一方面是对基体组织的影响。 氮对石墨形态的作用是一个非常复杂的过程。主要表现在:石墨表面吸附层的影响和共晶团尺寸大小的影响。由于氮在石墨中几乎不溶解,因此,在共晶凝固过程中氮不断吸附在石墨生长的前沿和石
28、墨两侧,导致石墨在析出过程中,其周围浓度增高,尤其在石墨伸向铁水中的尖端时,影响液 固界面上的石墨生长。氮在共晶生长过程中石墨片尖端和两侧氮的浓度分布存在明显的差别。由于氮原子在石墨表面上的吸附层能够阻碍碳原子向石墨表面的扩散。石墨前沿的氮浓度比两侧高时,石墨长度方向的生长速度降低,相比之下,侧向生长就变得容易些,其结果使石墨变短、变粗。同时由于石墨生长过程中总会存在缺陷,氮原子的一部分被吸附在缺陷位置而不能扩散,将会在石墨长大的前沿上局部非对称倾斜晶界,其余部分仍按原方向长大,从而石墨产生分枝,石墨分枝的增加,是石墨变短的另一个原因。这样以来,由于石墨组织的细化,减小了其对基体组织的割裂作用
29、,有利于铸铁性能的提高。 氮对基体组织的影响作用,一是由于它是珠光体稳定元素,氮含量的增加,使铸铁共析转变温度降低。因此,当灰铸铁中含有一定量的氮时,能使共析转变过冷度增加,从而细化珠光体。另一方面是由于氮的原子半径比碳和铁都小,可以作为间隙原子固溶于铁素体和渗碳体中,使其晶格产生畸变。由于上述两方面的原因,氮能对基体产生强化作用。 虽然氮可以提高灰铸铁的性能,但是,当其超过一定量时,会产生氮气孔和显微裂纹如图2所示,所以对氮的控制应是在一定范围内的控制。 一般为70120PPm,当超过180PPm时铸铁的性能将会急剧下降。 图2 氮气孔Ti在铸铁中是属于一种有害元素,究其原因是钛与氮的亲和力
30、较强,当灰铸铁中的钛含量较高时无益于氮的强化作用,首先与氮形成TiN化合物,这就减少了固溶于铸铁中的自由氮,事实上正是由于这种自由氮对灰铸铁起着固溶强化的作用。因此钛含量的高低间接的影响着灰铸铁的性能。 2 熔炼控制技术 2.1 材料化学成分的选择 通过上述分析,对化学成分的控制是熔炼技术中非常重要的,它是熔炼控制的基础。所以合理的化学成分,是保证材料性能的基础。通常对于高强度铸铁(抗拉强度300N/mm2)的成分控制主要有等。C、Si、Mn、P、S、Cu、Cr、Pb、N 表1 GB牌号化学成分% C Si Mn P S Cu Cr Pb N3.03.3 1.51.9 0.60.9 <0
31、.06 <0.1 0.40.8 <0.12 <20ppm 70120ppm 2.2炉料配比的确定 表2 炉料配比% 生铁 废钢 回炉铁520 5070 其余2.3微量元素的控制技术 实际过程控制中,根据对炉料的分析,确认铅的来源主要是废钢,所以对原材料中铅的控制主要是要对废钢中Pb夹物的控制,通常铅含量控制在15ppm以下。如果当原铁水中含铅量>20ppm时,在进行孕育处理时进行特殊变质处理。 由于Ti主要来源于生铁,所以对Ti的控制主要是控制生铁,这样一方面是在采购时要对生铁中的Ti含量提出严格要求,通常要求生铁含钛量为:Ti<0.8%,另一方面是要根据生铁的含
32、钛量及时调整使用量。 主要来源于增碳材料和废钢中,因此对N的控制主要是控制增碳材料和废钢,但是正象上面所述过低过高对灰铸铁的性能都有不利的一面,因此对N的含量控制范围一般为:70120ppm,但是N的含量还要和Ti含量有一个合理的匹配,通常N与Ti的关系为:N:Ti=1:3.42即0.01%的Ti可吸收30PPm的氮,生产时一般建议氮量为:N=0.0060.01+Ti/3.42。图3为在灰铸铁中钛与氮的关系。 图3 氮与钛的关系2.4熔炼工艺的控制技术 1)孕育技术 孕育处理目的在于促进石墨化,降低白口倾向,降低端面敏感性;控制石墨形态,消除过冷石墨;适当增加共晶团数和促进细片状珠光体的形成,
33、从而达到改善铸铁的强度性能和其它性能的目的。在实际过程控制中,需要控制的参数如下: 表3 孕育处理参数孕育剂种类 粒度 加入量 孕育方式 孕育温度 孕育有效时间 75Si-Fe 35 0.30.6 二极孕育 14201460 10分钟铁液温度对孕育的影响及控制铁液温度对孕育的影响显著。在一定的范围内提高铁液的过热温度并保持一定时间,可以使铁液中残存着未溶的石墨质点,完全溶入铁液中,以消除生铁的遗传影响,充分发挥孕育剂的孕育作用,提高铁水受孕育能力。过程控制中,对过热温度提高到15001520,对孕育处理温度控制在14201450。 孕育剂的粒度是孕育剂状况的重要指标,对孕育效果有很大影响。粒度
34、过细,易于分散或被氧化进入溶渣而失去作用,粒度太大,孕育剂熔化或溶解不尽,不仅不能充分发挥孕育作用,反而会造成偏析、硬点、过冷石墨等缺陷。因而对孕育剂的粒度尽量控制在25mm。保证孕育效果。 过程控制中孕育工艺主要在孕育槽孕育,这样对一包浇注的铸件,基本可以在孕育衰退前浇注结束。但对于比较大的件和双浇包浇注的件,不能满足要求。因而采用了晚期孕育方法:即在浇注铸件之前,在浇包中进行浮硅孕育(孕育量为0.1%),这样减小了或不存在孕育衰退,提高了孕育效果。 2)合金化处理 合金化处理向普通铸铁中加入少量的合金元素,提高灰铸铁的力学性能。在熔炼过程控制中,对合金的加入,主要是针对顾客要求淬火的件和导
35、轨比较厚大的件,主要加入的合金元素及加入量。如表4所示: 表4 常用合金元素及含量 Cu Sn Cr 0.40.7% 0.050.08% 0.10.2%这样在一定程度上保证了由于CE值的提高造成性能的下降,而且对淬火件来说,提高了淬火时的淬透性。保证了淬火深度。1) 对熔炼过程的温度控制如图4: 图4电炉熔炼过程曲线图中OA段是投料熔化过程,这个阶段重点控制的加料顺序,按废钢、机铁、生铁的先后顺序进行加料,为了减少合金元素的烧损,铁合金应在最后加入,当冷料全部化清后升温至1450即A点,。如果低于1450时则有增碳剂或铁合金不完全溶解的危险。 在AB段,应做如下处理: 测温; 扒渣; 取样分析
36、化学成分; 利用热光谱仪对常规元素和微量元素进行分析; 取三角试片测CW值; 根据各种检测结果对铁水进行调整后,继续送电10分钟后重新取样分析,确认所有数据正常后继续升温至1500左右,即C点。在CD段,让铁水静置5至10分钟后取三角试片测试CW值,测温后准备出铁。 三角试片的控制 对于不同牌号,确定不同三角试块的白口(CW)控制范围,结合炉前成份分析确定铁水质量。 3 结论 上述灰铸铁的熔炼技术,自1996年至2003年间在CSMF已成功的应用了8年,铸件的CE控制在3.63.9的前提下,不论是抗拉强度指标,还是实体硬度指标(特别是部分机床件导轨硬度)都满足要求,很大程度上提高了铸件的切削性
37、能。经证明此项技术已是一种定型的技术,其控制要点如下: 3.1 材料化学成分的控制 3.2 炉料配比的确定 3.3 微量元素的控制技术 3.4 孕育处理工艺的控制 3.5 合金化处理 3.6 对熔炼过程的温度控制 3.7 三角试片的控制 参考资料0. 铸造合金及其熔炼 机械工业出版社 氮合金元素 国际密烘金属有限公司 密烘技术安装手册 国际密烘金属有限公司 20世纪80年代初,铸铁材料发展进入了顶峰期,随后,世界的铸铁产量便出现急剧递减,然而铸铁仍是当今金属材料中应用最为广泛的基础材料,在铸造合金材料中占有重要地位。 由于
38、受能源、劳动力价格和环境因素的影响,西方工业发达国家的铸件产量将会逐渐减少,转而向发展中国家采购一般铸件,但同时又会向发展中国家出口高附加值、高技术含量的优质铸件。当前,世界经济全球化进程的加速为我国铸造业的发展提供了机遇,国际和国内市场对我国铸件的需求呈持续增长的趋势。与此同时,铸铁作为一种传统的金属材料,在其质量、性能和价格等方面正面临着严酷的挑战。抓紧我国铸铁铸造业的结构调整和技术改造;努力提高铸件质量档次,提高和理环境污染的水平,实现铸铁材料的高附加值化是应付未来更加激烈的市场竞争,满足用户多样化需求的主要对策。 一、我国铸铁的生产水平及
39、差距 1铸造工艺材料及辅料 我国铸造工艺材料如原砂、粘土、煤粉、粘结剂和涂料在品种、性能、质量等方面与工业先进国家之间的差距极大,以致我国的铸件尺寸精度和表面粗糙度比国外差一到两个等级,铸件表面缺陷造成的废品率比国外高几倍。铸造用工艺原料的标准化、系列化和商品化仍是一个亟待解决的问题。 2铸造工艺过程及铸件质量的检测与控制 我国在铸造工艺过程和铸件质量的检测与控制方面与工业先进国家还存在比较大的差距,主要
40、反映在以下方面: 铸造工艺过程的检测。 铸造工艺过程的优化和控制。 铸件质量的检测。而上述检测和控制手段的完善是提升我国铸铁铸造生产水平的一个主要内容。 3铸造工艺装备 对于铸造生产,国外广泛采用流水线大量生产;高压造型、射压造型、静压造型和气冲造型;造芯全部用壳芯和冷、热芯盒工艺。国内除汽车等行业中少数厂家采用半自动、自动化流水线大量生产外,多数厂家仍采用
41、较落后的铸造工艺装备。 二、铸铁熔炼技术 1冲天炉技术 冲天炉居铸铁熔炼设备之首,至今仍担负着80以上铸铁件的熔炼任务。70年代以后,符合我国特点的炉型和熔炼技术已逐渐完善和成熟,形成了独具特色的多排小风口和两排大间距冲天炉系列。在操作技术上,从一度追求低焦耗到重视铁液质量,进而讲求提高技术、经济、劳动卫个和环境保护的综合指标,逐步开发应用了从炉料处理、修炉、烘炉到配加料、鼓风。炉况控制、铁液检验等全过程的操作技术。在较短的历程中,我们在冲天炉理论研究
42、、炉子结构、修炉材料、送风系统、热能利用、强化底作燃烧、炉内气氛调整控制、铁液炉前检验、消烟除尘、非焦炭化铁、配料及熔炼过程计算机优化控制等诸多方自都取得了可喜的成绩。 冲火炉的发展是围绕着提高性能和生产率,降低消耗,改善操作,减少污染进行的。冲天炉性能主要体现在炭的燃烧、炉料的加热和冶金过程三方面。随着铸铁生产批量的扩大和对铸造生产率及铸件质量要求的提高,冲天炉容量也不断增大。大容量的冲天炉熔炼状况更稳定,无论技术上还是经济上比小炉子更具优势。因此,在单一品种大批量生产中,用一台大容量炉子取代多台小炉子是合理的、在国际上,冲天炉的最新发展主要为
43、等离子体冲大炉、无焦冲天炉、新型回转熔炼炉 加入WTO将在我们面前展现一个竞争激烈的世界铸件市场。因此;冲天炉熔炼的发展将围绕强化管理、推进技术改造、提高规模效益进行。我国冲天炉技术的发展方向主要有以下若干方面: (1)走专业化生产道路,提高冲天炉生产率,向大型化、智能化。长期作业方向发展。 (2)炉料供应专业化、规模化。 (3)大力发展冲天炉配套技术,同时加强对冲天炉的控制和检测。
44、; (4)发展冲天炉一电炉双联熔炼技术。 (5)高温优质铁液是冲天炉熔炼的根本要求。 2电炉技术 感应电炉由于具有铁液温度高。成分稳定、污染少、便于调整铁液成分的优点,60年代初,在一些工业发达国家开始普及。近年来,中频感应熔炼炉的迅速发展给铸铁生产注入了新的活力。 感应电炉的发展和应用,使铸铁生产进入了一个新阶段。尽管工频感应电炉存在某些不足,但它在金属熔炼。铁液成分调整。金属液
45、的升温和保温,尤其作为其他熔炼炉的双联用炉仍在普遍应用。中频感应电炉特别适合熔炼合金铸铁、球墨铸铁和蠕墨铸铁,它的迅速发展和所显示的优越性,使其在铸铁生产中呈现出被广泛应用的新趋势。 三、铸铁件的生产状况和趋势 1铸铁合金 世界铸铁件的生产状况和趋势是,灰铸铁件的比例明显下降,但仍占优势。球墨铸铁件的产量持续增长,蠕墨铸铁和特种铸铁也有了较大的发展。 全球的灰铸铁产量逐年下降,但从铸铁中的高强度铸铁所占的
46、比重越来越大,加强高强度灰铸铁的试验研究无疑是我国灰铸铁的发展方向。 我国可锻铸铁总产量在世界上名列前茅,但需求量还将有所增大。所以,今后我国可锻铸铁还将有一个大的发展。目前,我国可锻铸铁的生产与国外的主要差距是:品种少,仅有黑心可锻铸铁;质量差;镀锌工艺落后;缺少耗能低、保温性好、污染小的理想退火炉。 在铸铁产量缩减的情况下,球墨铸铁在铸铁件中所占的比率依然在增大。在西方发达国家,通常用球墨铸铁件取代部分灰铸铁件和可锻铸铁件。我国球墨铸铁铸件产量比较低,占铸铁件的比例远小于发达国家。此外,我国球墨
47、铸铁件在质量和生产稳定性方面的差距也较大。我国球墨铸铁生产较突出的问题是材质强韧性上、缺陷多,其原因除炉料、球化处理方法和球化剂等因素外,主要是球化处理前对铁液含硫量要求过松。因此,为使我国球墨铸铁生产能有大幅度的增长,必须大力实施能稳定提供质量可靠的优质球墨铸铁件的配套技术。 国内外有蠕化工艺和蠕化剂的研究方面都达到了很高的水平,所研制的蠕化剂种类繁多,已达近百种。目前,在生产中应用的蠕化剂主要是稀土用铁镁合金、稀土硅钙合金和稀土镁钛合金。国内外现有的蠕化处理工艺主要有冲入法、随流法、气动法和型内法等。蠕墨铸铁已用于大量生产,建有生产线(用感应
48、电炉熔化),质量基本稳定。 随着现代化工业的发展,对具有特殊性能的材料的需求量不断增长,向我国特种铸铁(抗磨、耐蚀和耐热铸铁)的发展速度较缓慢,技术水平和国外差距较大。为了适应新形势下国民经济发展的需要,特种铸铁的研究今后将成为我国铸铁发展的一个重要方向。2铸铁合金的发展 (1)高强化、薄壁化是我国灰铸铁的发展方向铸铁薄壁化、轻量化、强韧化是为了满足工程界对工程材料节能性、回用性两方面的要求,适应“人类可持续发展战略”的需要。铸件的“薄壁高强化”正在工程界成为一种趋势,其技术应用也将日益成熟并迅速拓
49、展,在可以预见的将来,35mm的高强度薄壁球墨铸铁件将会大量出现在一般机电产品中。 与铝合金铸件相比,低成本和良好的铸造性能是灰铸铁件的一个主要优势。目前,制约灰铸铁件增长和发展的主要因素之一是轻量化,铸铁轻量化必将为铸铁工业注入新的活力。因此,高强度薄壁灰铸铁件的生产技术开发成为问题的关键。 薄壁铸件生产技术涉及铸铁性能、充型过程。精密造型、机加工、模样、工艺设计和市场等方面。许多研究和实践表明,开发薄壁铸铁件的首要任务是开发高碳当量。高强度灰铸铁及其强化工艺。铸造出高强度、薄壁及复杂内腔铸件,必
50、须从材质、工艺和装备等整体上采取综合措施加以解决。国外在柴油机、发动机缸体缸盖的铸造和薄壁高强度灰铸铁的孕育处理方面达到较高水平。 我国高强度灰铸铁研究的重点是: 提高铁液温度,改善铸铁冶金质量,采用合成铸铁熔炼工艺。 加强孕育处理技术。尤其是强化孕育铸件的研究和推广。 研究和推广低合金化孕育铸铁。 调整化学成分、控制铸铁的Si/C比,以获得高强度低应力铸铁
51、。实践证明,合使St/C比值在0 .50.9,再加以适当的孕育和合金化,可获得综合力学性能良好的高强度灰铸铁。另外,调整Mn、Si含量,使锰含量比硅含量高0.2%1.3%,可以得到高强度低应力铸铁。目前,我国的工厂大多无炉前快速测定C、Si含量的仪器,因而不能及时掌握碳、硅的波动及变化情况,致使铸件质量难以稳定,这是今后应急需解决的一个问题。 (2)发展球墨铸铁新品种,采用新工艺 加强薄壁大断面铸态球墨铸铁技术的开发和应用。要保证铸件的强度和切削加工等性能不致因壁厚减小而降低,其基本途径就是使球墨铸铁的力学性能得到改良。最重要的有两个方面:一是白口化倾向的减低和抑制,二是石墨组织的改善。球化剂的合理选用和稀土(RE)元素的加入是实现高强度薄壁球墨铸铁铸造的关键。该技术的核心是在铸造(熔炼)工艺中要保证RE/Sk=22.5。球化剂要选用Fe-Si-Mg-RE-Ca系材料,其中稀土元素(Ce、 La、Pr)的加
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度无人机OEM研发与市场推广合同3篇
- 年度制冷空调机械竞争策略分析报告
- 二零二五版淀粉行业绿色生产与循环利用合同3篇
- 年度记忆绵枕市场分析及竞争策略分析报告
- 二零二五年度谷壳供应链金融服务合同3篇
- 2025年新型建筑装修工程施工企业信用担保合同范本3篇
- 铁矿粉购销合同模板2025年度2篇
- 二零二五年智能硬件研发项目技术合同登记管理细则3篇
- 2025年度钻井工程地质勘察合同3篇
- 2025年度盆景植物租赁与艺术展览合作合同范本
- 2025年生产主管年度工作计划
- 2025年急诊科护理工作计划
- 高中家长会 高二寒假线上家长会课件
- 违规行为与处罚管理制度
- 个人教师述职报告锦集10篇
- 四川省等八省2025年普通高中学业水平选择性考试适应性演练历史试题(含答案)
- 《内部培训师培训》课件
- 《雷达原理》课件-3.3.3教学课件:相控阵雷达
- 西方史学史课件3教学
- 2024年中国医药研发蓝皮书
- 红色中国风蛇年年会邀请函
评论
0/150
提交评论