主动悬架pid控制策略研究概要_第1页
主动悬架pid控制策略研究概要_第2页
主动悬架pid控制策略研究概要_第3页
主动悬架pid控制策略研究概要_第4页
主动悬架pid控制策略研究概要_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、汽车悬架的半主动控制系统MATLAB/SIMULNK 仿真S0705234沙小伟摘要:分析当前轿车的悬架系统,对之进行简化。首先建立其1/4模型,利用仿真软件MATLAB里面的附件Simulink对悬架的简化模型进行仿真,考察其加速度,输出位移等特 性。在此基础上进 一步建立悬架系统的1/2模型,继续考察车身的加速度,输出位移,转角等系列特性。Simulink软件在整个的仿真过程中显示出强大的能力。关键词:汽车悬架,半主动控制,仿真Abstract: Analyze the suspension system of modern car, and then simplify it. First

2、 the model was an alyzedwith 2 degrees of freedom by the software simuli nk. Based on this, and the n buildi ng 12 degrees of the suspension system. Inspect the acceleration and rotation angle and some other characters .In the whole process, the software simuli nk displayed powerful capacity.Keyword

3、s: car suspension, semi -active control, simulation引言汽车悬架系统简介。悬架系统是车辆的一个重要组成部分。车辆悬架性能是影响车辆行驶平顺性、操作稳定性和行驶速度的重要因素。传统的被动悬架一般由具有固定参数的弹性元件和阻尼元件组成,被设计为适应某一种路面,限制了车辆性能的进一步提高。20世纪70年代以来工业发达国家就已经开始研究基于振动主动控制的主动、半主动悬架系统。近年来随着电子技术、测试技术、机械动力等学科的快速发展,使车辆悬架系统由传统被动隔振发展到振动主动控制。特别是信息科学中对最优控制、自适应控制、模糊控制、人工神经网络等的研究,不仅

4、使悬架系统振动控制技术在现代控制理论指导下更加趋于完善,同 时已经开始应用于车辆悬架系统的振动控制1 ,使悬架系统振动控制技术得以快速发展。随着车辆结构和功能的不断改进和完善,研究车辆振动,设计新型悬架系统,将悬架的振动控制到最低水平是提高现代车辆质量的重要措施。当代轿车的悬架系统。当代轿车悬架系统最常见的形式有:摇臂滑柱式(麦弗逊)、双A臂与多连杆式悬架系统。摇臂滑柱式悬架具有结构简单、成本低廉等优点。常见的欧洲车采用的较多。它存在的问题是:在持续颠簸的路面行驶,驾驶员容易疲劳,即车辆的操作稳定性不好,舒适性欠佳。但是由于其结构简单、易维修保养及成本低,因此在一些中低价位车上广泛地用着。一些

5、新型轿车上常见的多连杆式悬架系统,具有极佳的舒适性。多连杆式悬架系统的最大的优点是:其可平衡的达到其它悬架系统所达不到的性能要求,它是目前最先进的悬架系统。以日产兼具舒适性和操作稳定性智能型“QT悬架系统”为例,它具有极佳的操作稳定性转弯及直线行驶稳定性,能有效的克服路面的颠簸状况及改善制动时汽车的点头现象,可有效地降低车辆行驶的噪音2,使车内更加宁静,全面提高的汽车的舒适性,且具备结构简单,体 积更小,噪音更小的优点。此种悬 架极有可能成为未来悬架系统的主流。双A臂悬架系统是一种兼具舒适性条件和操作稳定性的组合方案。但其成本高昂,生产工艺难度大,且要求具有极高的定位精度,因此只有在赛车和高价

6、位车上才应用。双A臂悬架再加上防倾平衡杆,能很好的适应急转弯的操作。丰田 LUXUS IS 200就装用了此类悬架,再加 上低高宽比轮胎、 创立了驾车者十分信赖的行车稳定性。在悬架系统部件的选择上往往出现悬架“偏硬”与容易失掉乘坐舒适性,以及“偏软”和让人晕车的两难境地。汽车制造商为此采取折中的方案,既照顾全面,且又有所偏好。在处理操作稳定性和舒适性方面,德国BMW公司开发出一套EDC电子减振器。EDC自动检测出悬架系统中减振器的行程及行车的路面情况,并根据当时的车速计算出最适宜的悬架软硬度,从而最大限度的保证行车及乘坐的舒适性。在极颠簸的路面也能获得车轮与路面的最佳接触,从而提高行车的安全性

7、。也就是说EDC能依据路面状况调整悬架的软硬程度,可满足人们操控车辆和乘坐舒适性的双重需用。汽车悬架系统的类型和工作原理。根据现代车辆对悬架提出的各种性能要求,悬架的结构形式和振动控制方法随时都在更新和完善3。一般地说悬架的形式和结构很多,分类也不尽相同,导向构的形式,可分为独立悬架和非独立悬架。按控制力则可分为被动悬架、半主 动悬架、主动悬架 三种基本类型,其简化模型如图所示X2'i k2m 1r kiXiX0k2m2T kiX2JcX1力发生器X0图1悬架简化模型简化模型如图1中第被动悬 一般的车辆绝大都装有由弹簧和减振器组成的机械式悬架,一个图所示。其中弹簧主要用来支撑簧上质量的

8、静载荷。而减振器主要用于控制响应特性。这种悬架系统的刚度和阻尼参数一般通过经验设计或优化设计而选择。一旦确定就不能在车辆行驶的过程中随外部变化而改变。而对车辆悬架的要求:一是提高制动、转弯等过程的稳 定性,要求悬架具有较高的阻尼系数;二是为隔开随机 路面不平及车扰动,提高乘坐舒适性,要求较低的阻尼系数。被动悬架的参数不能任意调节和选择,限制了起性能的进一步提高, 因此减振性能很差。半主动悬架。半主动悬架的简化模型如图1第二个图所示由可变刚度的弹簧和减振器组成。其基本控制原理是根据簧上质量对车轮的速度响应和加速度响应等反馈信号,调节可调弹簧的刚度或可调减振器的阻尼力。半主动悬架在产生力的方面近似

9、于被动悬架,但其阻尼系数或刚度系数是可调的。通常以改变减振器的阻尼力为主,将阻尼分为两级或三级,由人工选 择或由传感器信号自动确定阻尼级。另外可以改变弹簧刚度达到半主动 控制的目的。目前主 要应用的是空气弹簧。主动悬架。主动悬架的简化模型如图1第三个图所示,由弹性元件和一个力发生器组成,力发生器的作用是改进系统中能源的消耗并供给系统以能量,该装置的控制目的是实现一个优质的隔振系统,而无须对系统作出较大的变化。因此,只需使力发生器产生一个正比于绝对速度负值的主动力,即可实现该控制目标。这种悬架系统的减振效果非常的明显。但是,该 系统的商品化存在较大的困难,主要是硬件价格昂贵以 及消耗能量过大,现

10、在只用于少量排量较大的高档轿车。 汽车悬架控制系统的控制方法。车辆悬架控制系统是一个含有许多不确定因素的非线性机、电、液一体化系统,基于模型的线性控制策略受到很大的限制,也即用传统的控制方法难以达到预定的性能要求。目前应用于车辆悬架控制系统的控制方法主要有现代控制方法(如)和智能控制方法(如模糊、自适应控制方法、预见控制方法、最优控制方法及鲁棒控制方法 神经网络控制)以及复合控制方法。自适应控制方法。自适应控制是针对具有一定不确定性的系统而设计的。自适应控制方法4。其基本出发点是根剧可自动检测系统的参数变化,从而时刻保持系统的指标性能为最优系统当前输入的相关信息,从预先计算并存储的参数中选取当

11、前最合适的参数。其设计关键是选取能准确反映输入变化的参考变量。只要参数选择适当,控制器就能快速、方便地改变控制参数,以适应当前输入的变化应用于车辆悬架控制系统的自适应控制方法主要有自校正控制和模型参考自适应控制两 类控制策略。自校 正控制是一种将受控在线识别与控制器参数相整定相结合的控制方法。如 图所示。模型参考自适应控制的原理是当外界激励条件和车身自身参数状态变化时,被动车辆的振 动输出仍能跟踪 所选中的理想参考模型。采用自适应控制车辆悬架减振器在德国大众汽车公 司的汽车上得到了应用。合肥工业 大学的陈无畏等人将自适应控制应用于汽车半主动悬架, 在实车应用过程中,振动性能明显优于被动悬架悬架

12、系统道路输入执行器图2自校正自适应控制框图预见控制方法。预见控制方法是利用车辆前轮的扰动信息预估路面的干扰输入,将测量的状态反馈给前后控制器实施最优控制。由于这种控制技术可以通过某种方法提测量到前方路面的状态和变化,将使控制器系统有足够的时间采取措施。因此大大降低系统的能耗,且改善系统的控制性能。根据预见信息的测量和利用方法不同,可构成不同的预见控制系统。如 对四轮进行预见控制和利用前轮扰动信息对后轮进行预见控制。一个控制系统,如果在决定控制指令时,不仅考虑系统当前状态,而且还对系统未来的目 标值或干扰予以 考虑,这样一种预见控制的方法,往往能弥补因系统响应速度不足所带来的 缺陷而提高控制性能

13、,降低系统控 制能量峰值和控制系统能量消耗。最优控制方法。最优控制首先要提出一个目标函数,通过一定的数学方法计算出使函数取 峰值的控制输入。 一般地说,目标函数的确定要靠经验,最优控制的解只有在极少数的情况 下才得出解析,有的可以通过计算机 得到数值解。智能控制方法。智能控制是一门新兴的学科领域,是针对系统及其控制环境和任务的不确定而提出来的。智能控制过程是含有复杂性,不确定性,且一般不存在已知算法的非传统数学公式化的过程。在智能控制过程中,以知识信息进行推理和学习,用启发式方法来引导求解。因此,就智能控制系统而言,系统应该设计成为对环境和任务的变化有快速的应变能力,且能完成各种难以用传统的分

14、析数学和统计数学方法定义得清楚的任务,目前,智能控制技 术已广泛用于各种系统中,智能性已成为衡量产品和高技术的标准。应用于清楚悬架系 统的智能控制主要有模糊控制和神经网络控制。现在,车辆悬架控制方法的研究几乎涉及到控制理论的所有分支,各种方法均有其特点和 不足之处。二采 用复合控制方法则可以达到意想不到的效果,如自适应和鲁棒的结合、自适 应控制和神经网络控制的结合以及 神经网络控制和模糊控制的结合等。研究标明,复合控制 方法更适用于车辆悬架这样非常复杂的非线性系统的建模和控制,也是悬架控制研究今后的 一个重点内容本文的主要任务。本文的目的是设计汽车悬架系统的变刚度半主动控制系统,鉴于汽车的悬架

15、主要由弹簧、减振器、导向机构组成,我们把设计的重点放在这些方面。达到半主动控制的目的可以有两种方法,一是改变汽车悬架阻尼器的阻尼系数,另一种就是改变汽车悬架车轮弹簧的刚度。这里采用第二种方法,即改变弹簧的刚度。采用形状记忆合金智能材料作 为弹簧的材料,利用其刚度可变的特性达到半主动控制的目的。首先建立汽车悬架最简单的1/4模型,然后用Simulink软件进行仿真,主要考察车身的振 幅的仿真曲线, 结果表明采用形状记忆合金材料做成的弹簧,达到了半主动控制的目的,与传统的被动控制相比其振幅有了明显的下降。为了使试验结果更有说服力,我们在悬架系统 1/4模型完成之后,建立较为复杂的悬架系统的1/2

16、模型,为此将进行一些简化。在此原则上,考虑随机激励输入下驾驶员座椅处垂直方向的响应,驾驶员座椅连接在簧载质量上。再次用Simulink软件进行仿真,考察车身簧载质量的振幅的仿真曲线,结果表明与传统的被 动控制相比其振幅有了明显的下降。悬架系统的1/4模型建立。仿真软件 Simulink 的简介。Simulink是一种用来实现计算机仿真的软件工具。它是 MATALAB的一个 附加组件,用来提供一个系统的建模与动态仿真工作平台11。它一般可 以附在MATALAB上同时安装,也有独立安装版。Simulink是用模块组合的方法来使用户能够快速、准确的创建动态系统的计算机模型,特别对于 较复杂的非线性系

17、统,它的效果更为明显。Simulink模型可以用来模拟线性或非线性、连续或离散或两者的混合系统,也就是说它可以用来模拟几乎所有可遇到的动态系统。另外, Simulink还提供一套图形动画的处理方法, 使用户可以方便的观察到整个动态 仿真的过程。Simulink没有单独的语言,但它提供可 S函数规则。所谓S函数可以是一个M文件、FORTRAN程序、C 或C+语言程序等,通过特殊的语法规则使之能够被Simulink模型或模块调用。S函数使Simulink更加充实、完备,具有更强的处理能力。同MA TALAB 一样,Simulink也不是完全封闭的,它允许用户可以很方便的建立自己的模 块和模块库。同

18、时Simulink也同样有自己的帮助系统,使用户可以随时找到对应的模块说明,便于使用。综上所述,Simulink就是一种开放式的,用来模拟线性或非线性的以及连续或离散的或两者混合的动态系统的强有力的系统级仿真工具。目前,随着软件的不断升级换代,Simulink在软硬件的接口方面有了长足进展,使用Simulink可以很方便的进行实时的信号控制和处理、信息通信以及DSP处理。世界上许多知名的大公司已经使用Simulink作为他们产品设计和开发的强有力工具 12。建立悬架系统的1/4模型。为研究车辆振动的半主动控制,需建立车辆悬架系统的动力学模型,而二自由度悬架系统的模型具有普遍意义15。本文首先建

19、立悬架系统最简单的1/41/4模型,简图如模型,我们知道就轿车而言共有前后计四个车轮,这里将针对前轮靠近左边的悬架系统建立下。其中ml为非簧载质量(kg) , m2为簧载质量(kg)。k2X2Xiki根据系统的动力学微分方程有:m 2X2 =-k 2(X2Xi)Ci(X2Xi)Xo图5悬架系统的1/4模型公式1m ixi - -k i (xi-xo) k2 ( X2 -Xi) 0 ( X2 -Xi)公式2将系统的动力学方程改成状态方程,选取状态变量如下:y i =Xi公式3y2 =x 2公式4y 3 =Xi公式5yi 二 y3公式7y2 = y4公式8y3 =ki k2yiCi,Cikiy3

20、'y4xok2k2c1c2y4 y1y2y3y4m 2m 2m2m 2公式ioX0是路面的激励,xi是m 位移(m) , X2是m的位移(m)。ki是轮胎的刚度kN/m ) ,k 2是弹簧的刚度(kN/m)。Ci是阻尼器的阻尼系数 (Ns.m)将状态方程写成矩阵的形式如下: 1VI“ 2y3ly4001000ki + k2k2cim imim ik2k2cim 2 m2m 2公式ii图6 1/4悬架系统的Simulink仿真1ci . 20e iy2,ki xomi 3y I miCiLy4 -0m2I悬架系统的仿真及结果。选取仿真参数如下m 仁 33kg: m2=330kg: kI=

21、II7000N/m: k2=I0287N/m: ci=i000 N sm改变刚度后参数如下:k 仁 II7000 N /m : k2=26i82 N /m,其余不变系统的输入信号是限带白声,它经过一次积分可以近似模拟路面的随即输入。建立悬架系统的状态方程后就可以进行模型的仿真了,本文利用MATLA 口的SIMULINK首先建立仿真模型。在MATLAB的命令窗口键入 SIMULINK,就进入仿真集成环境。SIMULINK包含很多模块,比如 sin ks,source,li near, non li near,等,每个模块又有很多子模块,利用这些模块可以方便的得出悬架的仿真模型,如下图。Band

22、Limited White Noise由于要仿真汽车在实际路面的行使性能,本仿路真输入模块选择(有限带宽白噪声),经积分后得到仿真路面。实际路面上可以看作路面速度功率频谱值在整个范围里为一常数,即为“白噪声”人体对平顺性、舒适度最主要的感觉是车身振动的频率和强度(即加速度的大小)真输出模块选取示波器和功率频谱分析器(Simulink Extras 下的 Additional Sinks AveragingPower Spectral Density 选件,注意:横坐标采用的是圆频率 W对加速度进行分析。仿真分析。建立仿真模型后就可以开始对悬架系统进行动态仿真。在Simulink软件界面上选择S

23、imulink菜单下的Parameters项,进行仿真时间等参数的设里,例如,取为10秒?然后选择START项进行悬架仿真。得到下图所示模型的仿真结果。图7车身的振动加速度曲线图8车身加速度功率谱分析从图8中可以看出系统在仿真路面下,其振动有低频振动与高频振动两种,低频振动为车轮的振动,高频振动为车身的振动。改变悬架的有关参数就可以观察对汽车的平顺性有无改变。悬架系统的1/2模型?建立悬架系统的1/2模型。影响汽车行驶平顺性的因素有车体的垂直振动16,车轮的横向摆动以及由于前后轮的独立振动而引起的车体的俯仰振动和左右轮独立振动而引起的车体的翻转运动。考虑四轮汽车每个轮有垂直振动,左右摆动,前后

24、摆动,则每个轮有三个自由度,因此整车共计12个自由度。对于12个自由度的车体来说,如果建立其动力学方程是极其困难的,所以我们得将汽车的模型简化。对模型进行简化主要考虑以下几点:(1)将整个车辆视为左右对称,整车模型用一个平面模型来代替。这样的代替因为车辆的左右轮的随机路面输入相关藕合很小,几乎可以忽略。同时汽车左右轮之间的跨度要小于前后轮之间的跨度,因此,车体的翻转运动要比车体的俯仰运动对舒适性的影响要小得多,可以忽略翻转运动。(2)仅考虑悬架的垂直运动。车辆行驶的过程中,路面的随机激励输入一般以路面不平的形式垂直作用于车轮,因而悬架的左右和前后的振动是非常微小,可以忽视。(3)将车体视为完全

25、刚性。(4)忽视车体俯仰运动对车体水平运动的藕合影响。(4)悬架系统的参数是决定汽车行驶平顺性的主要因素之一。乘员的舒适性和货物的安全可靠的运输将作为本文的设计主要目标。因此,将考虑在随机激励输入下驾驶员坐椅处垂直方向的响应,驾 驶员坐椅连接在簧载质量上。根据上述的简化原则,汽车简化为图示的四自由度振动模型。X1x4m4f02(t)x2 '八 m212ml1=11+12k1m3公L1x3f01(t)图9汽车悬架系统的1/2模型fol (t) , f 02 (t)分别是路面对前、后轮的激励。(N/m )。ki, k2分别是上图中所示的前、后悬架的垂直刚度k3, k4分别是前、后轮胎的垂直

26、刚度(N/m )ci, C2是前、后悬架阻尼器的阻尼(N s m')m, m是前、后悬架非簧载质量,m是簧载质量(kg)。xi车身m的位移,x 2为车身m的转角(kg)。X3质量m的位移,X4质量m的位移(m)。m簧载质量绕质心横轴的转动惯量。Li, L2为前后悬架到车辆质心的距离(m)。系统的仿真。将汽车视为常系数线性动力学系统,应用拉格朗日方程可得系统的动力学方程。按照拉格朗日的方法,系统的振动方程可表示如下:二 Qj(t)其中T是系统的动能,V是系统的势能,D是能量离散函数。公式12qj是广义速度,q j是广义坐标。Qj t广义干扰力T、V、D分别如下所示:由上式得:1ki Xi

27、|iX2 _x31 ” i m ixi m 2 X22212 ciiXi'|iX2_X3k2 Xi |2X2 X4 I 1 k3X32i k4X422 2 21. i .22m 3 x3m4X42 2-1C2X1_|2X2_X4 J 2 iJm iXi ki Xi |iX2 -X3 ik2 Xi 2X2 -X4 ici Xi |iX2-X3 ai Xi - I2X2 -miX 2 |iki Xi 11X2 -X3 -I 2k2 Xi _|2X2 _X4 iTiCi公式13公式14公式15公式16Xi I 1X2 - X312 c X1-I2X2-X4=0I公式17m3X3 ki(Xi+

28、I 1X2X3 )+k 3X3 Ci Xi + 卜X2-X3 = f 01公式18m 4x4 k2A 1 |2X2 X4 )+k 4x4c2X1T2X2 X4 f02公式19平其改为下式:M X+CX + KXm im 2M =Ci +C2 -Cl|i -C2|2C = -c1=F公式20m3 m 4|iC1 +1 2C2-CiCi|i2 -C2| 22-Ci|i一C1公式21c1"-C2 |-C2| 2 0-c2-C2|20 C2公式22-k+k 2ki|i +k 2|2-k i-k2 ki|ik2|222-k i|ik2|2K =-k ik|,+k |-|iki 1ki +k 3

29、0-k21水20k2 + k4公式23 G0公式24F =f 01其中M是质量矩阵、C是阻尼矩阵、K是刚度矩阵、F是输入矩阵。选取状态变量:yA X i : y2 =他'.乂 =沁门 A 二公式25yAx i: yAX 2: yAX 3:X4公式26公式27公式28公式29y 4 = y8c1 c2 y5 m iC1 l1 C2|2 c1c2k1 k2k111k2|2k1 k2公式30y5y6y7y8y1y2y3y4m 1mimim 1m 1m3 m公式31c|i -C2| 2ci|i J | C2|22ci|ic2|2| iki2k2ki|i2k|22|iki |2k2y6y5y6y

30、7y8yiy2yy4m2m2m2m2m2公式32.7二,Uy 5 .理60y7 上 yi .空 y2k1 k3 y3y7m3 m3 m 3m3m3m3m3公式33f 02c2c2l2c2k2k2|2k2 - k4y8:y5y6 - y8 y1 ,y2 -y41m 4 m4m4 m4 m4m4m4公式34将其改为矩阵的形式如下y1yay4ysntysy701_y8 jf 02-00001000yd00000100y200000010y300000001k1 +k2k”1 k2|2k1k2c1 +c2 1 l-C2I 2c1c2y4一一m 1m 1mim 1m 1m 1m 1m 1y5hk1 -|

31、 2k22 2k11 1k2l 2C1| 1 -C2| 22 2c1l1c2l2y6m2km +k J m2m2m2m2沙m2m2m2k1k”1k1 +k30c1c11c10y7m3m3m3m3m3m3J 8k2k2l20k2 +k4c2c2l20m4m4m4m4m 4c2 m4公式35仿真结果及分析。仿真参数的选择:2m1=500 kg : m2=90 kg m : m3=30 kg : m4=40 kgk1=10287 N/m : k2=10287 N/m : k3=100000 N/m : k4=100000 ci=ioooN/mN s m : c2=iooo N s m图10车身的振动加速度曲线Frequency (rads/sec)图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论