版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、曹家大院某院晋祠鼓楼晋祠硕亭太谷民居门墩石狮子请请你你欣欣赏赏xyoxyo 2)(xxfxxf)(观察下列两个函数图象并思考以下问题:观察下列两个函数图象并思考以下问题:(1)这两个函数图象有什么共同特征吗?)这两个函数图象有什么共同特征吗?(2)相应的两个函数值对应表是如何体现这些特征的?)相应的两个函数值对应表是如何体现这些特征的? x-3-2 -1 0 1 2 3 2)(xxf x -3 -2 -1 0 1 2 3 xxf)(94101493210123 我们得到我们得到,这两个函数图象都关于这两个函数图象都关于y轴对称轴对称.从函数值对应表可以看到,从函数值对应表可以看到,当自变量当自
2、变量x取一对相反数时取一对相反数时,相应的相应的两个函数值相同两个函数值相同.即点即点(x,f(x)在图象在图象上上,相应的点相应的点(-x,f(x)也在函数图象上。也在函数图象上。我们能否利用函数解析式来描述函我们能否利用函数解析式来描述函数图象的特征呢?数图象的特征呢?y=x2 -xx当x1=1, x2= -1时,f(-1)=f(1)当x1=2, x2= -2时,f(-2)=f(2)对任意x,f(-x)=f(x)偶函数定义: 如果对于函数定义域内的任意一个x ,都有f(-x)=f(x)。那么f(x)就叫偶函数。yxo)0(1)(xxxfx0-x0f x 3 x-3-2 -1 0 1 2 3
3、 3)(xxf x -3-2 -1 1 2 3 27278xxf1)(81011121312131我们得到我们得到,这两个函数图象都关于这两个函数图象都关于原点对称原点对称.从函数值对应表可以看从函数值对应表可以看到到:当自变量当自变量x取一对相反数时取一对相反数时,相应相应的两个函数值相反的两个函数值相反.即点即点(x,f(x)在图象上在图象上,相应的点相应的点(-x,-f(x)也也在函数图象上。在函数图象上。我们同样可以利用函数解析式来我们同样可以利用函数解析式来描述函数图象的这个特征。描述函数图象的这个特征。例如:对于函数例如:对于函数f(x)=xf(x)=x3 3有有 f(-1)=(-
4、1)3=-1 f(1)=1f(-2)=(-2)3=-8 f (2)=8 f(-x)=(-x)3=-x3f(-1)= - f(1)f(-2)= - f(2)f(-x)= - f(x)-xx奇函数定义:如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x)。那么f(x)就叫奇函数。思考思考:偶函数与奇函数图象有什么特征呢?偶函数的偶函数的图象图象关于关于y轴对称轴对称.函数函数y=x2的图像的图像 偶函数的图像特征偶函数的图像特征奇函数的图像特征奇函数的图像特征函数函数y=x3的图像的图像o奇函数的奇函数的图象图象关于关于原点对称原点对称.例例1.根据下列函数图象根据下列函数图象,判断函数
5、奇偶性判断函数奇偶性.112)(2xxfyxyxxxf)(yx-122 , 1,)(2xxxfyx-11 1 , 1,)(3xxxf例例2.判断下列函数的奇偶性判断下列函数的奇偶性:221( );f xxx解:(1)对于函数 ,其定义域为 ,因为对定义域内的每一个x,都有所以函数 为奇函数。;)(3xxf(1) (2)先确定定义域先确定定义域, ,再再验证验证f(x)f(x)与与f(-x)f(-x)之之间的关系间的关系. .3)(xxf),(),()()(33xfxxxf3)(xxf221)(xxxf).(1)(1)()(2222xfxxxxxf0)(xf(4)(3) )1 , 3(x2( )
6、f xx定义域关于原 点对称是函数具有奇偶性的必要条件。 1 , 3x由于定义域不关于原点对称,所以f(x)为非奇非偶函数。解:(3)(4 4))()()()(, 0)()(xfxfxfxfxfxf且,故函数f(x)为既是奇函数也是偶函数。奇函数偶函数既奇又偶函数非奇非偶函数 根据奇偶性, 函数可划分为四类: 判断函数奇偶性步骤判断函数奇偶性步骤:(1)先确定函数定义域先确定函数定义域,并判断并判断定义域是否关于原点对称定义域是否关于原点对称;(2)确定确定f(x)与与f(-x)的关系的关系;(3)作出结论作出结论.若若f(-x)=f(x)或或f(-x)-f(x)=0,则则f(x)是偶函数是偶
7、函数;若若f(-x)= - f(x)或或f(-x)+f(x)=0,则则f(x)是奇函数是奇函数.思考1:函数f(x)=2x+1是奇函数吗?是偶函数吗?xy012f(x)=2x+1-1分析:函数的定义域为r 但是f(-x)=2(-x)+1 = -2x+1 f(-x) - f(x)且f(-x) f(x) f(x)既不是奇函数也不是偶函数。(也称为非奇非偶函数) 如右图所示:图像既不关于原点对称也不关于y轴对称。思思考:考:思考2:完成课本页的练习 奇偶性定义奇偶性定义:对于函数对于函数f(x),在它的定义域内,在它的定义域内,把任意一个把任意一个x换成换成-x,(x,-x均在定义域内)均在定义域内) 若有若有f(-x)=-f(x), 则则f(x)叫做奇函数;叫做奇函数; 若有若有f(-x)=f(x), 则则f(x)叫做偶函数。叫做偶函数。 定义域关于原点对称是函数具有奇偶性的必定义域
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论