火蔓延模型(翻译)_第1页
火蔓延模型(翻译)_第2页
火蔓延模型(翻译)_第3页
火蔓延模型(翻译)_第4页
火蔓延模型(翻译)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、火蔓延模型总结逆风火蔓延逆风火蔓延指的是火在自然对流条件下或者风速与火蔓延速率相反条件下的蔓延(Figure 1a)。由于逆风条件不利于火焰前方的热传递,火在这种条件下蔓延速率通常较小。由于逆风火蔓延实验研究相对简单,现在已有大量逆风火蔓延的实验数据。文献中现有的理论模型是传热模型。在这些模型中,火蔓延速率即为材料在火焰和外界热源作用下表面温度从初始值升到指定温度的速率。这个指定的温度通常认为是固体材料的蒸发温度。燃料的热解过程通常是不考虑的,且假设材料在温度达到蒸发温度后立马蒸发。这一过程可以用固相的能量守恒来进行分析,气固界面的初始条件由实验测量(Parker 1972; Hirano,

2、Noreikis, and Waterman 1973)获得(热流密度和加热长度)。这些模型不求解气相方程,因此并不能正确的模拟火蔓延过程,但给定一个气相边界条件后就能独立运算预测火蔓延。(De Ris 1969)和(Wichman and Williams 1983)的传热模型更精确些,他们对气相和固相耦合的能量方程进行了求解。为了简化计算,他们在求解气相能量和物质守恒方程时采用气体匀速运动(Oseen 近似流)和火焰面假设(无限化学反应速率)。这些假设条件使得方程获得解析解并且能够获得有限厚度材料火蔓延速率的显式表达式。(De Ris 1969)提出的热薄材料和热厚材料的火蔓延模型是最复杂

3、的模型。这个模型具有自适应性,能很好的预测化学反应不是主控因素的火蔓延(如氧气浓度高和风速较低的条件)(Pizzo et al. 2009; Fernandez-Pello, Ray, and Glassman 1981; Altenkirch, Eichhorn, and Rizvi 1983)。(Wichman and Williams 1983)对于热厚材料的分析假设火焰面在材料表面且Lewis不是1。有意思的是当Lewis数是1时得出的表达式与(De Ris 1969)的结果一致。上述文献中的作者认为deRis将材料表面燃料浓度的边界条件线性化事实上也迫使火焰面贴在材料表面。更有意思的

4、是当忽略气相和固相的纵向扩散时(抛物线方程)分析结果与椭圆形方程的表达式一样。由此得出结论,这些传热模型中火蔓延速率由火焰产生的热量和下游对流作用带走热量之间的整体热平衡决定的。材料表面(火焰)对气相和固相的传热都是通过法线方向的热传导实现的。因此,热平衡事实上是法线方向的热传导和纵向的对流之间的平衡。在(Wichman and Williams 1983)更进一步的研究中,Oseen近似流改进为线性分布。虽然线性分布更贴近真实气流,但应用于动量方程后使得问题更难求解,只能获得方程的近似解。(Wichman, Williams, and Glassman 1982)证明引入线性变化的速度分布获

5、得的解与实验值更贴近,然而这种方法的能否从总体上改进模型还不明确。下文中将提到,当模型中考虑气相动力学时线性速率分布会产生很多不同的结果,这是因为燃料表面向上游的传热和传质在火蔓延过程中起很重要的作用。图1. 火蔓延模式 (1a)逆风模式(1b)顺风模式上面介绍的模型用一个给定的蒸发温度来定义火焰前锋的位置,由此推算火蔓延速率,但这个方法一直以来都有争议。(Sirignano 1972)指出这种方法是错误的,蒸发温度取决于燃料和气体的特性,化学动力学常数等。(Williams 1977)证明使用一个固定的蒸发温度可行,但是必须要取合理的值,即必须考虑到实验时的动力学环境。(Fernandez-

6、Pello and Hirano 1983)提出在不同实验条件下将蒸发温度,气相化学动力学效应作为经验系数代入传热模型预测火蔓延速率。然而,虽然上述方法在实际应用中取得了较好的效果,但要建立一个更精确且能自适应的模型就必须要考虑到化学反应的作用。为了避免用到常值蒸发温度,(Sirignano 1974),(OHKI and TSUGÉ 1974)提出了考虑燃料与空气界面间化学反应的模型。在(OHKI and TSUGÉ 1974)的分析中,表面化学反应随着火焰面进行。虽然模型是自适应性的,但是他们只能应用于表面反应的燃料和静止环境。最近的实验研究表明在大多数条件下火蔓延发生

7、在接近熄灭的条件(大气或者受污染的环境) ,要获得精确的模型就必须考虑气相化学反应动力学。一些学者在模型中已经考虑了有限的化学反应(Tarifa, Del Notario, and Torralbo 1969; Zhu, Lu, and Wang 2015; Lastrina, Magee, and McAlevy 1971; Annamalai and Sibulkin 2007)。常用的假设条件有:使用边界层近似来描述气体流动;预混气体在材料蒸发温度会发生自燃从而导致火蔓延。蒸发温度通过表面热通量和材料热解的能量守恒计算获得。第一个假设忽略了气流方向的传热和传质,因此只适用于固相热传导主控

8、的条件。第二个假设虽然包括了有限化学反应,但不符合火蔓延的真实情况,真正的火蔓延过程应该是燃料热解气体在外部热流下强迫点燃。Figures 2a,2b和2c分别表示自由燃烧竖直表面的速度,温度和物质分布图。从图中可以看出由于材料表面的边界条件是无滑移的,表面附近的低速率使得这个区域有大量热和质量向上游传递。对于强迫通风条件来说,随着风速增加,火焰渐渐向表面靠近,向上游的热扩散减少。(Wichman and Williams 1983)提出了一个新的热厚材料逆风火焰传播模型,模型中认为由燃料向上游扩散引起的预混火焰会使下游燃烧表面的扩散火焰熄灭。他们认为气体流动的速度梯度为常数,考虑了有限化学反

9、应速率且模型同时适用于化学反应主控(预混火焰/小Damkohler数)和热传导主控(火焰面/大Damkohler数)。为了获得解析解,作者做了一系列近似和假设,其中一个假设是将火焰前锋区域看做半圆预混火焰,温度和浓度场认为呈圆形对称分布。圆形对称假设与(Wichman and Williams 1983)的实验结果和(Frey and James 1979)的模拟结果定性相符,将能量和物质守恒方程转化为非线性常微分方程,因此降低了求解难度。但是,由于分析中引入了大量假设和近似,作者必须经常改变未知参数的数值使得Damkohler数趋近于无穷大时得到的火蔓延速率方程与之前的模型相同。以上分析过程

10、难度大,有局限性且难以获得火蔓延速率的独立表达式。由此说明获得火蔓延问题的解析表达式十分困难。上文中所述的理论模型通常会忽略火焰热辐射或者用经验系数表征辐射的影响。对于竖直向下火蔓延或者火焰在逆风作用下贴近材料表面的蔓延,未燃区域相对于火焰的视角系数比较小,忽略辐射的影响较为合理。然而,对于水平火蔓延或者对于尺度较大的火焰来说,除非火焰中无碳黑,否则必须考虑火焰辐射的作用。虽然很多现象分析中已经考虑到了辐射的作用,但真正把辐射加入到数值方程求解中却很难,并且大大增加方程计算的难度。首先,火焰的辐射特性尚不清楚,它取决于烟颗粒分布,发射率,温度,气体温度以及光学厚度。其次,要想求得视角因子必须精

11、确刻画火焰的形状。当火焰随时间变大时,视角因子与火焰的空间位置和时间相关。另外,能量方程中加入辐射项将引入一个非线性项,极大增加求解难度。近些年来扩散火焰的烟颗粒分布研究取得了一些进展,这将有利于对火焰辐射的研究。图2. 自然对流环境下火蔓延结构图(2a)速度场(2b)等温线(2c)质量浓度分布顺风火蔓延在顺风模式下气体流动方向与火蔓延的方向相同(见图1b)。风会加强火焰对未燃区域的热传递进而促进火蔓延由于顺风火蔓延实验较难做(非稳态速度较大),上世纪末人们才开始关注顺风火蔓延的研究。在顺风火蔓延中,只有点火源附近刚开始的一段是层流,热对流起主控作用,之后的蔓延大多是在湍流状态下发生,火焰对表

12、面的热辐射作用不可忽略。除此之外,在实际应用中可燃材料是可碳化材料,火蔓延与材料和瞬时状态相关。辐射,湍流,碳化材料的燃烧引入了较多的未知参数。因此,现有文献的理论模型常常简化为非碳化材料,无火焰辐射和层流。图3. 1.25cm厚的PMMA在不同氧气浓度和风速条件下的火蔓延速率虽然有限的化学反应对顺风火蔓延的影响较小,但复杂的传质过程增加了建模难度。在顺风模式下,火蔓延由下游火焰对未燃区域的热传递主控。火焰贴近未燃区域表面,一旦燃料开始热解,燃料蒸汽进入扩散火焰区形成火焰。火蔓延可以看做热解或燃烧前锋的蔓延,火蔓延的速率取决于固体材料表面温度升到热解或蒸发温度的速度。(Loh and Fern

13、andez-Pello 1985)研究了热解前锋的速率与风速和氧气浓度之间的关系。火在平板流作用下在热厚PMMA材料上顺风蔓延的实验结果见图3。由图中看出不同工况下热解前锋的蔓延速率可以写成一个无量纲的形式。是热解前锋速率, 是气流速率,Tv是PMMA的热解温度,Tf是绝热火焰温度,Ti是材料的初始温度。上面的关系式表明在该实验条件下火蔓延过程是由热传递主控,关系式中没有出现有限的化学反应项。更重要的是关系式表明在顺风条件下火蔓延速率是火焰产生的热与固相和气相带走的热相互平衡的结果。现有的大多数顺风火蔓延理论模型与实验的定性结果相似。例如,多数理论模型(Orloff, De Ris, and

14、Markstein 1975; Sibulkin and Kim 1976; Tsai 2009)都得出固体竖直向上火蔓延的蔓延速率与热解长度或热解时间有这样的关系: ,且实验也证实了上述关系式的正确性。类似的,顺风火蔓延的理论模型(Fernandez-Pello and Mao 1981)得出火蔓延速率与风速成正比的关系(图3)。顺风火蔓延的数学模型大多只考虑固相能量守恒方程,表面热流是固气交界面的初始边界条件。因为固相法线方向的温度梯度比轴向方向的温度梯度大得多,所以一维瞬态方程足够表征固相的变化,其中的不确定因素是可燃物的碳化。碳化行为导致材料的物理性质随时间变化,且为碳化机制的描述引入

15、了很多不确定因素。(Carrier, Fendell, and Fink 1983)的模型是第一个考虑了碳化行为的模型。他们假设碳化材料和原材料有不同的密度,原材料达到固定温度后发生气化。炭和原材料的交界面随时间发生变化,在能量方程中引入瞬时效应。虽然文中的分析不能准确的表述碳化行为,但却是可碳化材料火蔓延的第一次尝试。对气相过程的处理是上述模型最大的区别。分析气相过程能够得到固-气界面的热流和边界条件。和逆风火蔓延一样,顺风火蔓延模型有的是直接处理气相方程,有的则将气相状态作为界面的初始条件。大多数分析假设气相是层流且忽略了火焰辐射,利用火焰面假设和Oseen近似来简化反应流。(Markst

16、ein and De Ris 1972)提出热厚材料和热薄材料向上层流火蔓延的无量纲方程,得出火蔓延速率与热解长度和时间呈幂律关系。(Fernandez-Pello and Mao 1981)得出适用于多个层流条件的火蔓延速率的表达式。解气相方程时将气相过程认为是准静态过程,且通过绝热表面从固相中解耦出来。气相动量和能量方程用类似的方法获得交界面的热流,将物质方程积分获得火焰长度。上述结论用于一维瞬态固相能量方程的边界条件,解方程可以得到固体表面温度的表达式。(CARRIER, FENDELL, and FELDMAN 1980; Carrier, Fendell, and Fink 1983

17、)通过假设Oseen近似流求解了气相和固相守恒方程,并使用Volterra积分方法和滑移边界条件解得二维固相能量守恒方程。以上方程较为复杂,但得出的结论与使用了简化条件的模型相同,由此说明适当的简化可以降低求解难度并且保证一定的正确性。上述模型有自适应性且得到的结论与小尺度实验的实验结果相符,但只适用于顺风火蔓延的初始阶段。在初始阶段中,火蔓延可以认为是层流,且对流热传递主控。在不通过求解气相方程获取固相边界条件的模型中,固体稳定燃烧的实验结果(Orloff, De Ris, and Markstein 1975; Markstein and De Ris 1972)或者表达式常被用作边界条件

18、。(Sibulkin and Kim 1977)获得层流和湍流条件下不同材料厚度的固体向上火蔓延的显式表达式。为了求解稳态固相能量方程,他们认为未燃区域的热通量呈指数衰减,热解前锋的热通量为参考值。虽然边界条件是经验值,火蔓延过程被看成准静态过程,但所得结果与层流和湍流的实验结果相同。其他分析用时间步长来表示火蔓延过程,火焰从热解前锋蔓延到火焰顶端的时间为一个步长,所用的时间通过求解一维瞬态能量方程得到,交界面的边界条件是从热解前锋到火焰顶端的热通量为常数,火焰之前的热通量为0。在这里,热流的值是热解长度函数。这里的时间步长对应的是材料从初始温度到蒸发温度所用的时间。火焰长度与热解长度有这样的

19、对应关系:,是火焰长度,是热解长度。参数是常数且取决于燃料和环境条件的性质。(Markstein and deRis 1973)和(Orloff, De Ris, and Markstein 1975; Leventon and Stoliarov 2013; Rangwala 2007)在向上湍流火蔓延的研究中用实验结果给定热通量和n的值。在热薄材料的火蔓延实验中,燃尽时间需要另外测量。以上文献的分析结果与实验值相同,都得出火蔓延加速的结论。对于热薄材料来说,火蔓延速率渐渐趋近一个常数。(Annamalai and Sibulkin 1979)在热厚材料顺风火蔓延的研究中假设在每种流场条件下

20、热流量随热解长度呈幂律下降。火焰长度和热解长度的比值经下述方法求得:计算燃料表面热解前锋处的剩余蒸发量的近似解,燃料燃尽的位置通过假设火焰热解前锋前后的燃料消耗值相等来判定。火焰传播速率,热解长度和时间的幂律关系同(Fernandez-Pello and Mao 1981)的结论相同。理论和实验结果在定性上相似,但理论结果是实验结果的两倍。很多学者都认为造成这种误差很大程度上是因为热流的计算不准确,尤其是忽略了火焰辐射,火蔓延的初始条件也有偏差。从上文可以看出,所有的理论模型都有相似的特点,且得到的结论与实验结果都定性相似,这表明理论模型在一定程度上思路是正确的。为了获得更精确的模型,今后的模

21、型需要考虑湍流和火焰辐射的作用。对于碳化材料,碳化过程的描述至关重要。火焰熄灭现象首先发生在燃烧表面的上游,因此火焰熄灭现象与材料表面的静止燃烧相关,与火蔓延过程关系不大。事实上,(Loh and Fernandez-Pello 1985)在实验中观察到燃烧表面靠近上游边缘处发生熄灭现象,但后面的火焰依然蔓延。这就表明火焰熄灭现象发生时上游火焰熄灭现象必须延伸到热解前锋。熄灭的临界条件可以通过扩散火焰的稳态熄灭过程来进行分析。总结通过比较各个理论模型和它们与实验结果的一致性可以看出人们对火蔓延的控制机理已有了较深的理解。火蔓延现象涉及到气相和固相的运输,流体流动和化学动力学过程,数学求解有一定

22、难度。方程求解难度较大,有限的化学反应速率,湍流,辐射的影响以及材料本身属性是现在没有精确理论模型的原因。 求得一个适用于各种材料和各种工况条件的火蔓延速率的显式表达式到目前为止不太可能,受限于数学求解方法,目前我们只能得到适用于一定条件的火蔓延速率显式表达式。由于火蔓延过程涉及到热流动和化学反应机制,每个机制都很难进行数学分析。因此,只有当湍流反应,火焰和气体辐射,有限化学反应速率和固相热解有巨大理论进步时火蔓延模拟才能有发展。 参考文献Altenkirch, RA, R Eichhorn, and AR Rizvi. 1983. 'Correlating downward flam

23、e spread rates for thick fuel beds', Combustion Science and Technology, 32: 49-66.Annamalai, K, and M Sibulkin. 1979. 'Flame spread over combustible surfaces for laminar flow systems Part II: Flame heights and fire spread rates', Combustion Science and Technology, 19: 185-93.Annamalai, K

24、., and M. Sibulkin. 2007. 'Flame Spread Over Combustible Surfaces for Laminar Flow Systems Part II: Flame Heights and Fire Spread Rates', Combustion Science and Technology, 19: 185-93.CARRIER, GEORGE F, FRANCIS E FENDELL, and PHILLIP S FELDMAN. 1980. 'Wind-aided flame spread along a hori

25、zontal fuel slab', Combustion Science and Technology, 23: 41-78.Carrier, George, Francis Fendell, and Stanton Fink. 1983. 'Towards wind-aided flame spread along a horizontal charring slab: the steady-flow problem', Combustion Science and Technology, 32: 161-209.De Ris, JN. 1969. "Sp

26、read of a laminar diffusion flame." In Symposium (International) on Combustion, 241-52. Elsevier.Fernandez-Pello, AC, and T Hirano. 1983. 'Controlling mechanisms of flame spread', Combustion Science and Technology, 32: 1-31.Fernandez-Pello, AC, SR Ray, and I Glassman. 1981. "Flame

27、spread in an opposed forced flow: the effect of ambient oxygen concentration." In Symposium (International) on Combustion, 579-89. Elsevier.Fernandez-Pello, C, and C-P Mao. 1981. 'A unified analysis of concurrent modes of flame spread', Combustion Science and Technology, 26: 147-55.Frey

28、, Alfred E, and S James. 1979. 'A theory of flame spread over a solid fuel including finite-rate chemical kinetics', Combustion and Flame, 36: 263-89.Hirano, T, S Noreikis, and TE Waterman. 1973. "Measured Velocity and Temperature Profiles of Flames Spreading Over A Thin Combustible Sol

29、id." In.: Interim Technical Report.Lastrina, FA, RS Magee, and RF McAlevy. 1971. "Flame spread over fuel beds: solid-phase energy considerations." In Symposium (International) on Combustion, 935-48. Elsevier.Leventon, Isaac T., and Stanislav I. Stoliarov. 2013. 'Evolution of flame

30、 to surface heat flux during upward flame spread on poly(methyl methacrylate)', Proceedings of the Combustion Institute, 34: 2523-30.Loh, H-T, and AC Fernandez-Pello. 1985. "A study of the controlling mechanisms of flow assisted flame spread." In Symposium (International) on Combustion

31、, 1575-82. Elsevier.Markstein, GH, and John De Ris. 1972. Dynamics of Textile Fires: A Study of the Mechanisms-theory and Experiment (Factory Mutual Research).Markstein, GH, and J deRis. 1973. '14th Symp.(Int.) on Combustion', The Combustion Institute, Pittsburgh, PA, 1085.OHKI, YUZO, and SH

32、UNICHI TSUGÉ. 1974. 'On the flame spreading over a polymer surface', Combustion Science and Technology, 9: 1-12.Orloff, L, J De Ris, and GH Markstein. 1975. "Upward turbulent fire spread and burning of fuel surface." In Symposium (International) on Combustion, 183-92. Elsevier

33、.Parker, WJ. 1972. 'Flame spread model for cellulosic materials', Journal of Fire and Flammability, 3: 254-69.Pizzo, Y., J. L. Consalvi, P. Querre, M. Coutin, and B. Porterie. 2009. 'Width effects on the early stage of upward flame spread over PMMA slabs: Experimental observations',

34、Fire Safety Journal, 44: 407-14.Rangwala, Ali S. 2007. 'Upward flame spread on a vertically oriented fuel surface: The effect of finite width', Proceedings of the Combustion Institute.Sibulkin, Merwin, and Jeongbin Kim. 1976. 'The dependence of flame propagation on surface heat transfer

35、I. Downward burning', Combustion Science and Technology, 14: 43-56. 1977. 'The dependence of flame propagation on surface heat transfer II. Upward burning', Combustion Science and Technology, 17: 39-49.Sirignano, WA. 1972. 'A critical discussion of theories of flame spread across solid and liquid fuels', Combustion Science and Technology, 6: 95-105.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论