排列组合练习题及答案_第1页
排列组合练习题及答案_第2页
排列组合练习题及答案_第3页
排列组合练习题及答案_第4页
排列组合练习题及答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、排列组合习题精选一、纯排列与组合问题:1从9人中选派2人参加某一活动,有多少种不同选法?2从9人中选派2人参加文艺活动,1人下乡演岀,1人在本地演岀,有多少种不同选派方法?3. 现从男、女8名学生干部中选岀2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是()A.男同学2人,女同学6人B.男同学3人,女同学5人C.男同学5人,女同学3人D.男同学6人,女同学2人4. 一条铁路原有 m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站

2、有()A.12 个B.13 个C.14 个D.15 个答案:1、C; =362、A =723、选 B.设男生 丄人,则有 CCA3 = 90。4、兀十 _A: = 58选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为()A.720B.1440C.2880D.3600答案:1. A:A; =48 (2)选 B A?AA =1440三、不相邻问题:1. 要排一个有4个歌唱节目和3个舞蹈节目的演岀

3、节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐 3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个 空位,有多少种不同坐法?8. 在一次文艺演岀中,

4、需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是 ()A.28 种B.84 种C.180 种D.360 种433444342答案:1.A4A5=1440(2)人代=144(3)选 B 2A4A4=1152(4)A424(5)代代=480/、33336(6) A C424 (7) A? A4 144 (8)选 A Cs 28 -四、定序问题:1. 有4名男生,3名女生。现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法?2. 书架上有6本书,现再放

5、入 3本书,要求不改变原来6本书前后的相对顺序,有多少种不同排法?A答案于840= 504五、分组分配问题:1某校高中二年级有 6个班,分派3名教师任教,每名教师任教两个班,不同的安排方法有多少种?2. 6本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种?3.8项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有多少种?4. 6人住ABC三个房间,每间至少住1人,有多少种不同住宿方案?5. 有4个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?6. 把标有a,b,c,d,e,f,g,h,8件不同纪念品平均赠给甲、乙两位同学,其中a、b不赠

6、给同一个人,则不同的赠送方法有种(用数字作答)。4)答案:1. C6C4C2 A33 =90 (2) C;C;c3a3 =360(3) C8C5C4C2 A =1680A A誉1血2皿+于宀540亠A2111133C4C2C1 厂1 3C2C1 C6C3 - 2 2C4A =144 A2A2 =40A2A2六、相同元素问题:1. 不定方程的正整数解的组数是 ,非负整数解的组数是 。2. 某运输公司有 X1个车队每个车队的车多于4辆,现从这7个车队中抽岀10辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有()A.84 种B.120 种C.63 种D.301 种3. 将7个相同的小球全部放入4

7、个不同盒子中,(1) 每盒至少1球的方法有多少种?(2) 恰有一个空盒的方法共有多少种?4. 有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入 3个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有()A.9 种B.12 种C.15 种D.18 种5. 某中学从高中7个班中选岀12名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少 有1人参加的选法有多少种?336o122答案:1. C6=20 ,C“=1202.选AC9=843. (1)C6=20(2)CG =60(4)选 C, =15(5) G: =462七、直接与间接问题:1. 有6名男同学

8、,4名女同学,现选 3名同学参加某一比赛,至少有1名女同学,由多少种不同选法?2.7人排成一列(1) 甲乙必须站两端,有多少种不同排法?(2) 甲必须站两端,乙站最中间,有多少种不同排法?(3) 甲不站排头乙不站排尾,有多少种不同排法?3. 由1、2、3、4、5、6六个数字可组成多少个无重复数字且不是5的倍数的五位数?4. 2名男生4名女生排成一行,女生不全相邻的排法有多少种?5. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一个综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数()A.60 种B.80 种C.120 种D.140 种6. 5人排成一排,要求甲、乙之间至

9、少有 1人,共有多少种不同排法?7. 四面体的顶点和各棱中点共有10个点,在其中取 4个不共面的点不同取法有多少种?答案0:8i、c;c:+c:c6 C9A39=ioo或 c-CCTAioo2. ( 1)AiCTAWo( 2)a2A5 = 240(31A;a5A; +A: =3720或 A -2A5 +A? =3720 3、A5A4 =600或 A5 -A4 =6002A: A:A3 =576a 或4A5a2a2 + AaAaA詼765、选 ACA 昭 + C:c: + C:C: = 120 或4441232223252444C9 -C5 O =120 6、A3A2 Afe + A3 A2 A

10、 + A3A2 =72 或 A A A =72 _7、G。 4C§ 6 3 = 141八、分类与分步问题:1.求下列集合的元素个数.(1) M =( x, y) I x, y N ,x y _6;(2)- H 二( x, y) | x, y N ,1 _ x _ 4,1 _ y _ 52.个文艺团队有10名成员,有 有多少种不同选派方法?7人会唱歌,5人会跳舞,现派2人参加演岀,其中1名会唱歌,1名会跳舞,3. 9名翻译人员中,6人懂英语, 担任日语翻译,选拔的方法有 _4. 某博物馆要在 20天内接待8观3天,其余学校只参观 1天, A.种B. 种5. 从10种不同的作物种子选岀

11、同的放法共有(A.种6. 在画廊要展岀 画不能摆两端,A. 种7. 把一个圆周4人懂日语,从中选拔 5人参加外事活动,要求其中 种(用数字作答)。所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参 则在这20天内不同的安排方法为()C.种D. 种6个不同的瓶子展岀,如果甲乙两种种子不能放第一号瓶内,那么不3人担任英语翻译,6种放入B. 种1幅水彩画、4幅油画、 那么不同的陈列方式有B.种24等分,过其中任意B.132C.种D.5幅国画,要求排成一排, )种种并且同一种的画摆放在一起,还要求水彩D.A.1228.有三张纸片,正、反面分别写着数字 同三位数的个数是()C.3个分点

12、,可以连成圆的内接三角形,其中直角三角形的个数是C.264D.20241、2、3和4、5、6 ,将这三张纸片上的数字排成三位数,共能组不A. 24B.369.在120共20个整数中取两个数相加10 用0, 1,2,3,4,5这六个数字,(1)(2)(3)(4)(5)(6)C.48D.64,使其和为偶数的不同取法共有多少种可以组成多少个数字不重复的三位数? 可以组成多少个数字允许重复的三位数? 可以组成多少个数字不重复的三位数的奇数? 可以组成多少个数字不重复的三位数的偶数? 可以组成多少个数字不重复的小于 可以组成多少个大于11. 由数字1, 2,是 C3 A 7)C20A 17A.37611

13、2. 设有编号为1000的自然数?3000,小于5421的数字不重复的四位数?3,4,5,6, 7所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第A;:379个数A 20C18A 17B.4175C.5132D.61571、2、3、4、5的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有()A.30 种B.31 种C.32 种D.36 种13. 从编号为1, 2,10,11的11个球中取5个,使得这5个球的编号之和为奇数,其取法总数是()A.230 种B.236 种C.455 种D.2640 种14. 从6双不同颜色的手套

14、中任取4只,试求各有多少种情况岀现如下结果(1) 4只手套没有成双;(2) 4只手套恰好成双;(3) 4只手套有2只成双,另2只不成双16.如下图,共有多少个不同的三角形?10. (1)15. 从5部不同的影片中选岀4部,在3个影院放映,每个影院至少放映一部,每部影片只放映一场,共有 种不同的放映方法(用数字作答)。2 11 11答案:1、1) 15 (2)20 2、32 C2 +C2C8 +C5C3 =32c8A,八4八5八26.选 D A4A5A27.322231173.C5C3 +C5C3 +C5C3 =90 4.选 C C18C17 5选 C选 C 12x22 =264 8.选 C 2

15、3A3 =48 9.2C;=905 6 6 =180 ( 3) 3 4 4 = 48 ( 4)A A2AA = 5232(5)6 25 100=131 込120 48 6 1 =175 11.选 B 3A§ A -1 =37912、选 B53214325C5 +C5 汽1 +C5 汇2 =31 13、选 BC6C5 +C6C5 +C6 =236 14 、(1)4111121211C6C2C2C2C2 =240(2C6 =15(3)C6C5C2C2 = 2404 C4C2G 315.C5 - 2A3 =180 16.所有不同的三角形可分为三类:代第一类:其中有两条边是原五边形的边 ,这

16、样的三角形共有 5个;第二类:其中有且只有一条边是原五边形的边 ,这 样的三角形共有 5X 4=20个;第三类:没有一条边是原五边形的边 ,即由五条对角线围成的三角形 ,共有5+5=10个.有3种取法,k有3种取法,1有2种取法,根据分步计数原理得约数的个数为5 X 3X 3X 2=90个.jkl(2)奇约数中步不含有2的因数,因此 25200的每个奇约数都可以写成3 爲 ° 的形式,同上奇约数的个数为3X 3X 2=18 个.十、染色问题:,允许同一种颜色使用多次,但相邻区域必须涂1如图一,要给,,四块区域分别涂上五种颜色中的某一种 不同颜色,则不同涂色方法种数为()-J-若变为图

17、二,图三呢?2. 某班宣传小组一期国庆专刊,现有红、 黄、白、绿、蓝五种颜色的粉笔供选用, 要求在黑板中 A、B、C、D (如图)每一 部分只写一种颜色,相邻两块颜色不同, 则不同颜色粉笔书写的方法共有种(用具体数字作答)。X 4X 4=3202. 5气 4汉 3汉 3 = 18答案:1.选 a 5 4 3 3 =180 5 4 3 4 = 2 4 (5 x 4由分类计数原理得,不同的三角形共有 5+20+10=35个.九、元素与位置问题:1 有四位同学参加三项不同的比赛,(1)每位同学必须参加一项竞赛,有多少种不同的结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?2. 25200有多少个正约数?有多少个奇约数?答案:1. (1)每位学生有三种选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论