等比数列的性质(共9页)_第1页
等比数列的性质(共9页)_第2页
等比数列的性质(共9页)_第3页
等比数列的性质(共9页)_第4页
等比数列的性质(共9页)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上 教学内容【知识结构】1等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q0),即:=q(q0)1°“从第二项起”与“前一项”之比为常数(q) 成等比数列=q(,q02° 隐含:任一项“0”是数列成等比数列的必要非充分条件3° q= 1时,an为常数2.等比数列的通项公式1: 3.等比数列的通项公式2: 4既是等差又是等比数列的数列:非零常数列 5等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与

2、b的等比中项. 即G=±(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则,反之,若G=ab,则,即a,G,b成等比数列a,G,b成等比数列G=ab(a·b0) 6等比数列的性质:若m+n=p+k,则 在等比数列中,m+n=p+q,有什么关系呢? 由定义得: ,则7 等比数列的增减性:当q>1, >0或0<q<1, <0时, 是递增数列;当q>1, <0,或0<q<1, >0时, 是递减数列;当q=1时, 是常数列;当q<0时, 是摆动数列;【热身练习】 求下列各等比数列的通项公式: 1.

3、=-2, =-8 2.=5, 且2=-3 3.=5, 且 解:1. 2. 3.以上各式相乘得:【例题精讲】例1 已知是项数相同的等比数列,求证是等比数列.证明:设数列的首项是,公比为;的首项为,公比为,那么数列的第n项与第n+1项分别为:它是一个与n无关的常数,所以是一个以q1q2为公比的等比数列.例2 已知:b是a与c的等比中项,且a、b、c同号,求证: 也成等比数列证明:由题设:b2=ac 得: 也成等比数列例3 (1) 已知是等比数列,且, 求 (2) ac,三数a, 1, c成等差数列,成等比数列,求解:(1) 是等比数列, 2()25, 又>0, 5; (2) a, 1, c成

4、等差数列, ac2, 又a, 1, c成等比数列, a c1, 有ac1或ac1, 当ac1时, 由ac2得a1, c1,与ac矛盾, ac1, .例4 已知无穷数列, 求证:(1)这个数列成等比数列 (2)这个数列中的任一项是它后面第五项的, (3)这个数列的任意两项的积仍在这个数列中证:(1)(常数)该数列成等比数列 (2),即: (3), 且,(第项)例5 设均为非零实数, 求证:成等比数列且公比为证一:关于的二次方程有实根, , 则必有:,即,成等比数列 设公比为,则,代入 ,即,即证二: ,且 非零,例6设为数列的前项和,其中是常数 (1) 求及; (2)若对于任意的,成等比数列,求

5、的值解(1)当,() 经验,()式成立, (2)成等比数列,即,整理得:,对任意的成立, 例7在等差数列an中,若a100,则有等式a1+a2+an=a1+a2+a19n(n19,nN成立.类比上述性质,相应地:在等比数列bn中,若b91,则有等式 成立答案:b1b2bnb1b2b17n(n17,nN*);解:在等差数列an中,由a100,得a1a19a2a18ana20nan1a19n2a100,所以a1a2ana190,即a1a2ana19a18an1,又a1a19,a2a18,a19nan1a1a2ana19a18an1a1a2a19n,若a90,同理可得a1a2ana1a2a17n,相

6、应地等比数列bn中,则可得:b1b2bnb1b2b17n(n17,nN*)。【备选例题】例8如图31,在边长为l的等边ABC中,圆O1为ABC的内切圆,圆O2与圆O1外切,且与AB,BC相切,圆On+1与圆On外切,且与AB、BC相切,如此无限继续下去.记圆On的面积为an(nN*),证明an是等比数列;证明:记rn为圆On的半径,则r1=tan30°=。=sin30°=,所以rn=rn1(n2),于是a1=r12=,故an成等比数列。点评:该题考察实际问题的判定,需要对实际问题情景进行分析,最终对应数值关系建立模型加以解析。例9已知数列和满足:a1=,an+1=其中为实数

7、,n为正整数.()对任意实数,证明数列不是等比数列;()试判断数列是否为等比数列,并证明你的结论.解:()证明:假设存在一个实数,使是等比数列,则有,即矛盾.所以不是等比数列. ()解:因为又,所以当18, (N+),此时不是等比数列:当18时,,由上可知,(N+).故当-18时,数列是以(18)为首项,为公比的等比数列.点评:本题主要考查等比数列的概念和基本性质,推理和运算能力。例10等比数列的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上. (1)求r的值; (2)当b=2时,记 求数列的前项和解:因为对任意的,点,均在函数且均为常数)的图像上.所以得,当时, 当时,又因为

8、为等比数列, 所以, 公比为, 所以(2)当b=2时,, 则 相减,得所以【巩固练习】1.设等比数列an的公比q=2,前n项和为Sn,则= .2.等比数列an中,a3=7,前3项之和S3=21,则公比q的值为 1或- .3.如果-1,a,b,c,-9成等比数列,那么b= -3 ,ac= 9 .4.在等比数列an中,已知a1a3a11=8,则a2a8= 4 .5.若数列an的前n项和Sn=3n-a,数列an为等比数列,则实数a的值是 1 .6.设a1,a2,a3,a4成等比数列,其公比为2,的值为 .7.等比数列an前n项的积为Tn,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是 T17 .8.在等比数列中,前项和为,若数列也是等比数列,则等于( C ).(A) (B) (C) (D)C.提示:因数列为等比,则,因数列也是等比数列,则即,所以,故选择答案C。9.若互不相等的实数成等差数列,成等比数列,且,则( D )A4 B2 C2 D4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论