




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、知识点第一章 随机事件与概率 本章重点:随机事件的概率计算 1*事件的关系及运算 (1) (或) (2) 和事件: ; (简记为) (3) 积事件: , (简记为或) (4) 互不相容:若事件A和B不能同时发生,即 (5) 对立事件: (6) 差事件:若事件A发生且事件B不发生,记作(或) (7) 德摩根(De Morgan)法则:对任意事件A和B有, . 2 *古典概率的定义古典概型:几何概率· 3*概率的性质 (1) (2) (有限可加性) 设n个事件两两互不相容,则有 (3) (4) 若事件A,B满足,则有, (5) (6) (加法公式) 对于任意两个事件A,B,有.对于任意n
2、个事件,有 . 4*条件概率与乘法公式. 乘法公式: . 5*随机事件的相互独立性事件A与B相互独立的充分必要条件一: ,事件A与B相互独立的充分必要条件二: 对于任意n个事件相互独立性定义如下:对任意一个,任意的,若事件总满足,则称事件相互独立这里实际上包含了个等式 6*贝努里概型与二项概率 设在每次试验中,随机事件发生的概率,则在n次重复独立试验中,事件恰发生次的概率为, 7*全概率公式与贝叶斯公式贝叶斯公式:如果事件两两互不相容,且,则第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布 1*离散
3、型随机变量及其分布律分布律也可用下列表格形式表示: 2*概率函数的性质 (1) , (2) 3*常用离散型随机变量的分布 (1)01分布,它的概率函数为,其中,或1, (2)二项分布,它的概率函数为,其中, ()*泊松分布,它的概率函数为,其中,4*二维离散型随机变量及联合概率 二维离散型随机变量的分布可用下列联合概率函数来表示:其中, 5*二维离散型随机变量的边缘概率 设为二维离散型随机变量,为其联合概率(),称概率为随机变量的边缘分布律,记为并有,称概率为随机变量Y的边缘分布率,记为,并有 =. 6随机变量的相互独立性 设为二维离散型随机变量,与相互独立的充分必要条件为 多维随机变量的相互
4、独立性可类似定义即多维离散型随机变量的独立性有与二维相应的结论7*随机变量函数的分布 设是一个随机变量,是一个已知函数,是随机变量的函数,它也是一个随机变量对离散型随机变量,下面来求这个新的随机变量的分布 设离散型随机变量的概率函数为则随机变量函数的概率函数可由下表求得但要注意,若的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率相加第三章 连续型随机变量及其分布 本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算 1*分布函数 随机变量的分布可以用其分布函数来表示, 2分布函数的性质 (1) (2) ; 由已知随机变量的分布函数,可算得落在任意区间内的概率 3联合
5、分布函数 二维随机变量的联合分布函数 4联合分布函数的性质 (1) ; (2) ,; (3) 5*连续型随机变量及其概率密度 设随机变量的分布函数为,如果存在一个非负函数,使得对于任一实数,有成立,则称X为连续型随机变量,函数称为连续型随机变量的概率密度 6*概率密度及连续型随机变量的性质()(); (); (4)设为连续型随机变量,则对任意一个实数c,; (5)设是连续型随机变量的概率密度,则有 7*常用的连续型随机变量的分布 (1)均匀分布,它的概率密度为其中, (2)指数分布,它的概率密度为其中, (3)正态分布,它的概率密度为 ,其中,当时,称为标准正态分布,它的概率密度为,标准正态分
6、布的分布函数记作,即, 当出时,可查表得到;当时,可由下面性质得到设,则有 ;*二维连续型随机变量及联合概率密度 对于二维随机变量(X,Y)的分布函数,如果存在一个二元非负函数,使得对于任意一对实数有成立,则为二维连续型随机变量,为二维连续型随机变量的联合概率密度 *二维连续型随机变量及联合概率密度的性质 (1) ; (2) ; (3) 在的连续点处有 ; (4) 设为二维连续型随机变量,则对平面上任一区域有 1,*二维连续型随机变量的边缘概率密度 设为二维连续型随机变量的联合概率密度,则的边缘概率密度为;的边缘概率密度为 11常用的二维连续型随机变量 (1)均匀分布 如果在二维平面上某个区域
7、G上服从均匀分布,则它的联合概率密度为 (2) 二维正态分布 如果的联合概率密度则称服从二维正态分布,并记为. 如果,则,即二维正态分布的边缘分布还是正态分布 12*随机变量的相互独立性 , 那么,称随机变量与相互独立 设为二维连续型随机变量,则与相互独立的充分必要条件为 如果那么,与相互独立的充分必要条件是第四章 随机变量的数字特征 本章重点:随机变量的期望。方差的计算 1*数学期望 设是离散型的随机变量,其概率函数为则定义的数学期望为; 设为连续型随机变量,其概率密度为,则定义的数学期望为 2*随机变量函数的数学期望设为离散型随机变量,其概率函数则的函数的数学期望为 设为二维离散型随机变量,其联合概率函数则的函数的数学期望为; 3*数学期望的性质 (1) (其中c为常数); (2) (为常数); (3) ; (4) 如果与相互独立,则. 4*方差与标准差 随机变量的方差定义为计算方差常用下列公式: 当为离散型随机变量,其概率函数为则的方差为; 当为连续型随机变量,其概率密度为,则的方差为.随机变量的标准差定义为方差的算术平方根. 5*方差的性质 (1) (c是常数); (2) (为常数); (3) 如果与独立,则. 6原点矩与中心矩 随机变量的阶原点矩定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石家庄理工职业学院《灾害卫生学》2023-2024学年第二学期期末试卷
- 长垣烹饪职业技术学院《电工及电子学(二)》2023-2024学年第二学期期末试卷
- 益阳医学高等专科学校《开发技术》2023-2024学年第二学期期末试卷
- 天津体育职业学院《动力电池及能量管理技术》2023-2024学年第二学期期末试卷
- 区域经理个人工作总结
- 新银行员工年度工作总结
- 2025北师数学四下第二单元《三角形分类》同步习题
- 公司场地租赁合同标准范本2
- 做账实操-农资站的账务处理
- 致运动员运动会稿件100字(28篇)
- 出师表(选择题)答案版
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- (高清版)DZT 0208-2020 矿产地质勘查规范 金属砂矿类
- (高清版)DZT 0368-2021 岩矿石标本物性测量技术规程
- 矿山开采与环境保护
- 企业事业部制的管理与监督机制
- 儿童体液平衡及液体疗法课件
- 劳动防护用品培训试卷带答案
- ORACLE执行计划和SQL调优
- 2024年钟山职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 2024年湖南交通职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
评论
0/150
提交评论