第03章 直流电机的电力拖动(第1部分)._第1页
第03章 直流电机的电力拖动(第1部分)._第2页
第03章 直流电机的电力拖动(第1部分)._第3页
第03章 直流电机的电力拖动(第1部分)._第4页
第03章 直流电机的电力拖动(第1部分)._第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、直流电机直流电机的电力拖动的电力拖动图3.1 典型电力拖动系统的组成框图v电力拖动系统的基本问题,包括:电力拖动的动力学方程式及相关问题、电力拖动系统的稳定运行条件;v各类典型机械的负载转矩特性; v由他励直流电动机组成电力拖动系统的起、制动与调速方法及分析。 内容简介3.1 电力拖动系统的动力学方程式A、单轴电力拖动系统的动力学方程式图3.2 单轴电力拖动系统的示意图单轴电力拖动系统的动力学方程式可由下式给出:dtdJTTLem(3-1)其中,转动惯量 由下式给出:JgGDDgGmJ44222(3-2)考虑到机械角速度 与转速 之间的关系: ,于是有:60/2 n2375emLGD dnTT

2、dt(3-3)对于实际电力拖动系统,考虑到(1)电机可能正、反转运行;(2)电机可能运行在电动机或发电机运行状态;(3)负载转矩也可能由上升过程中的制动性变为下降过程中的驱动性转矩。因此,使用上式时需注意正、负号问题。正负号一般按如下惯例选取正负号一般按如下惯例选取:(1 1)首先取转速的方向为正方向;)首先取转速的方向为正方向;(2 2)对于电磁转矩,若与相同,则取)对于电磁转矩,若与相同,则取“+ +”;反之,若与方;反之,若与方 向相反,则取向相反,则取“- -”;(3 3)对负载转矩而言,若与方向相反,则取)对负载转矩而言,若与方向相反,则取 “+ +”;方向相;方向相 同则取同则取“

3、- -”;根据上述正负号选取规则,式(根据上述正负号选取规则,式(3-33-3)运算结果存在下列三种情况:)运算结果存在下列三种情况:1.1.若若 时,则时,则 = =常值,系统稳态运行;常值,系统稳态运行;2.2.若若 时,则时,则 ,电机处于加速状态;,电机处于加速状态;3.3.若若 时,则时,则 ,电机处于减速状态。,电机处于减速状态。 emLTTnemLTT0dndtemLTT0dndt 考虑到对实际的大多数拖动系统而言,在电机和生产机械之间存在诸如减速箱、皮带等传动机构,构成了所谓的多轴拖动系统多轴拖动系统。在使用式(3-3)时需进行多轴系统到单轴系统的折算,具体折算方法介绍如下:

4、B、多轴电力拖动系统的折算a a、折算的概念、折算的概念 图3.3 多轴电力拖动系统的简化折算的原则是:确保折算前后系统所传递的功率或系统储存的动能折算的原则是:确保折算前后系统所传递的功率或系统储存的动能不变。不变。b b、折算的方法、折算的方法1) 机械机构的转矩折算机械机构的转矩折算 折算时需考虑电动机和生产机械的工作状态。现分析如下: (1)当电动机驱动机械负载电动机驱动机械负载时,传动机构的损耗是由电动机承担的。于是有:LtLLTT根据上式,折算后的负载转矩为:()()LLLLtttLLTTTTnjn(3-4)式中, 为传动机构总的转速比; 为工作机构输出轴的机械角速度; 为工作机构

5、的实际负载转矩; 为传动机构的总效率。 LnjnLLTt(2)当生产机械驱动电动机生产机械驱动电动机时,传动机构的损耗是由生产机械承担的。于是有:LLLtTT 根据上式,折算后的负载转矩为:()LtLtLLTTTj(3-5)2)直线作用力的折算直线作用力的折算折算时同样应考虑功率的流向问题。图3.4给出了电机拖动起重机负载实现升降运动的示意图。 图3.4 电机带动起重机负载的示意图(1)当重物提升时,传动机构的损耗自然由电动机承担。于是有:LtLLTF v又 ,则上式变为:260n 609.552LLLLLttF vF vTnn (3-6)(2)当重物下放时,传动机构的损耗由工作机构承担。于是

6、有:LLLtTF v 式中, 为重物提升时传动机构的效率。t将角速度与转速的关系代入上式得:609.552LLtLLtLF vF vTnn(3-7)式中, 为重物下放时传动机构的效率。t 重物下放时传动机构的效率 与同一重物提升时传动机构的效率 之间满足下列关系式:tt12tt (3-8)3)惯量与飞轮矩惯量与飞轮矩 的折算的折算2GD按照折算前后系统储存的动能保持不变的原则,于是有:2222211221111122222MLLJJJJJ (3-9)则折算后的转动惯量为:2221212LMLJJJJJ()()()将 代入上式,则折算后的飞轮矩为: 24GDJg22222112212()()()

7、LLMLG DG DG DGDGDnnnnnn即:222221122222112()LLMG DG DG DGDGDjj jj(3-10)4)直线运动的质量折算直线运动的质量折算按照折算前后储存的动能保持不变的原则,有:221122MLLJm v 将 , 代入上式,则有:24MMGDJg ()260n 22222260()()365LLLLMG vG vGDnn (3-11) 通过上述折算,便可以将多轴拖动系统(包括旋转及直线运动)折算为单轴拖动系统。然后借助于单轴拖动系统的动力学方程式对多轴拖动系统的静、动态问题进行分析研究。3.2 各类生产机械的负载转矩特性定义: 生产机械的负载转矩与转速

8、之间的关系 即为生产机生产机械的负载转矩特性械的负载转矩特性,它与电动机的机械特性相对应。()Lnf T大多数生产机械可归纳为: A、恒转矩负载的转矩特性、恒转矩负载的转矩特性特点: 负载转矩不受转速变化的影响。在任何转速下,负载转矩总是保持恒定或大致恒定。 反抗性恒转矩负载的转矩特性如图3.6所示。图3.6 反抗性恒转矩负载的转矩特性 由图由图3.63.6可见,反抗性恒转矩负载的转矩与转速的方向总是相反,可见,反抗性恒转矩负载的转矩与转速的方向总是相反,亦即负载转矩总是阻碍电机的运动。亦即负载转矩总是阻碍电机的运动。 位能性恒转矩负载的转矩特性如图3.7所示。图3.7 位能性恒转矩负载的转矩

9、特性 由图由图3.73.7可见,位能性恒转矩负载的转矩不随转速方向的改变而可见,位能性恒转矩负载的转矩不随转速方向的改变而改变。无论电机正、反转,负载转矩始终为单一方向。改变。无论电机正、反转,负载转矩始终为单一方向。B、风机与泵类负载的转矩特性、风机与泵类负载的转矩特性特点:2LTKn图3.8给出了通风机类负载的转矩特性。图3.8 通风机类负载的转矩特性C、恒功率负载的转矩特性、恒功率负载的转矩特性特点:1LTkn图3.9给出了恒功率负载的转矩特性。图3.9 恒功率负载的转矩特性 实际生产机械大都是上述典型负载特性的组合。如实际的通风机负载转矩特性可表示为:20LTTKn(3-13)上式可用

10、图3.10所示曲线表示之。图3.10 实际通风机的转矩特性 对于机床的刀架平移机构,其特性为反抗性恒转矩负载特性、通风机类负载特性的组合,且低速时负载转矩加大3.3 电力拖动系统的稳定运行条件 A、电力拖动系统的稳态运行点定义:定义: 根据根据 可知,当可知,当 时,则时,则 = = 常值。若将电动常值。若将电动机的机械特性与负载的转矩特性绘制在同一坐标平面上,则两条曲机的机械特性与负载的转矩特性绘制在同一坐标平面上,则两条曲线的交点必为电力拖动系统的线的交点必为电力拖动系统的稳态运行点稳态运行点(见下图)。(见下图)。 2375emLGD dnTTdtemLTTn图3.12 电力拖动系统的稳

11、态运行点B、电力拖动系统的稳定运行条件 定义:定义: 对于稳态运行的电力拖动系统,若受到外部扰动(如电网电对于稳态运行的电力拖动系统,若受到外部扰动(如电网电压的波动,负载转矩的变化等)后系统偏离原来的稳态运行点。一压的波动,负载转矩的变化等)后系统偏离原来的稳态运行点。一旦干扰消除,系统能够恢复到原来的稳态运行点,则称旦干扰消除,系统能够恢复到原来的稳态运行点,则称系统是稳定系统是稳定的的;否则,;否则,系统是不稳定的系统是不稳定的。 图3.13说明了电力拖动系统稳定的概念。图3.13 电力拖动系统的稳定运行分析电力拖动系统稳定运行的条件为:电力拖动系统稳定运行的条件为:AAnLnemnTn

12、T(3-15) 上述结论可以通过系统的动力学方程式或上图的分析求得。其物理意义物理意义是:当在A点处于稳定运行系统受到外部扰动使得转速增加时,负载转矩的增加应大于电磁转矩的增加,系统才能够减速,回到原来的运行点。此时,系统在A点处是稳定运行的。3.4 直流电力拖动系统动态过程的一般分析与计算 动态过程(或过渡过程): 电力拖动系统从一种稳态向另一种稳态转换的过程(如起动、调速与制动),称为动态过程动态过程。 对电力拖动系统动态过程的研究主要集中在对转速、转矩以及电流在过渡过程中随时间的变化规律,即 , (或 ),这些规律是正确选择或校验电机及其定额的依据。( )nf t( )aIf t( )e

13、mTf tA、电力拖动系统的动态数学模型a、直流电动机的微分方程式直流电动机的微分方程式 图3.14 他励直流电动机的动态等效电路根据他励直流电动机的动态等效电路图3.14和 KVL,写出电枢回路的微分方程式为:1( )( )( )( )( )aaaaaedi tu tLRi te tdte tCn(3-16)励磁回路的微分方程式为:( )fffffdiutLR idt(3-17)机械系统的动力学方程式为:1emLemTadJBTdtCi (3-18)b、直流电动机的传递函数模型直流电动机的传递函数模型 对微分方程式(3-16)和式(3-18)取拉氏变换,可得直流电动机的传递函数: 1( )(

14、 )( )eaaU sCsIsL sR(3-19)1( )( )( )TaLC IsT ssJsB(3-20)考虑到激磁电流固定,上式中的 和 为常数。602eeCCTTCC由此获得直流电动机的传递函数框图如图3.15所示。 图3.15 直流电机的传递函数框图(电枢控制方式)根据图3.15可分别求出传递函数为: 21011( )( )()LTTaaeTCsU sL JsL BJR sRBC C(3-21)12011()( )( )()aLUaaeTL sRsT sL JsL BJR sRBC C(3-22)若忽略粘性阻尼系数,则式(3-21)和(3-22)可进一步简化为: 2101( )( )

15、( )1LeIMaMTCsG sU sT T sT s120(1)( )( )( )1aeTIILMaMuT sR C CsGsT sT T sT s(3-23)(3-24) 其中, 为电枢回路的电磁时间常数电磁时间常数;定义 为电力拖动系统的机电时间常数机电时间常数。RLTaa22375MeTGD RTC C忽略磁路饱和,则可利用叠加原理求得系统总的响应为:1( )( )( )( )( )IIILsG s U sGs T s(3-25)c、直流电动机的状态空间模型直流电动机的状态空间模型 取 和 为状态变量,则将微分方程式写成如下矩阵方程形式,即可获得他励直流电动机的状态空间描述:( )ai

16、 t( ) t111010eaaaaaLTCRuiiLdLLTdtCBJJJ(3-26)矩阵方程(3-26)可用下面标准形式表示为: XAXBU(3-27)其中, , 为状态变量; 为输入矢量。1,aLXiUuTXU1eaaTCRLLACBJJ1010aLBJB、直流电力拖动系统动态过程的一般分析计算a、直流电动机动态过程的一般分析计算直流电动机动态过程的一般分析计算 电力拖动系统存在下列两个时间常数:(1)电磁时间常数: ;(2)机电时间常数:在对电力拖动系统进行分析时,可根据实际系统按下列两种情况进行分析: RLTaa22375MeTGD RTC C1 1)忽略电磁时间常数(即仅考虑机械惯

17、量)的过渡过程分析)忽略电磁时间常数(即仅考虑机械惯量)的过渡过程分析在这种情况下,电力拖动系统的微分方程式变为:12375aaeaemLTaUERIC nRIGD dnTTCIdt(3-28) 现假定系统由某一稳态A向另一稳态B过渡(见图3.16a),要求计算过渡过程中转速与电枢电流随时间的变化规律,即: 与 。( )nf t( )aIf t(1 1)电枢电流的变化规律)电枢电流的变化规律( )aIf t由式(3-28)中的第1个方程得:1aeURInC(3-29)将其代入式(3-28)的第2个方程得:22375aaLaBMTeTdIdITGD RIITCC Cdtdt(3-30)其中, 为

18、对应于 (即B点)的稳态负载电流;LBTTICLT图3.16 他励直流电动机的过渡过程曲线式(3-30)可整理为:1aBaMMdIIIdtTT利用三要素法便可求得电枢电流的变化规律为:( )()tTMaBABItIIIe(3-31)式(3-31)可用图3.16b所示曲线表示之。(2 2)转速的变化规律)转速的变化规律( )nf t将式(3-31)代入式(3-29)得:111( )()tTMBABeeeURIURIURIn teCCC()即:()tTMBABnnnne(3-32)式(3-32)可用图3.16c所示曲线表示之。2 2)同时考虑机械惯量和电磁时间常数的过渡过程分析)同时考虑机械惯量和

19、电磁时间常数的过渡过程分析在这种情况下,电力拖动系统的微分方程式变为:12375aaaaaaaeemLTadIdIURILERILC ndtdtGD dnTTCIdt(3-36)现计算过渡过程中转速与电枢电流随时间的变化规律: , 。( )nf t( )aIf t由式(3-36)的第2式可得:2375aBTGDdnIICdt(3-37)将式(3-36)的第1式减去稳态电势平衡方程式: 得:1BeBURIC n()()0aaaBeBdILR IICnndt将式(3-37)代入上式并整理得:22aMMBd ndnT TTnndtdt(3-38)式(3-38)即为他励直流电动机拖动系统的一般微分方程。式(3-38)对应的特征方程为:210aMMT TT 相应的特征根为:1,2411122aaaMTTTT 根据时间常数的大小,现分两种情况进行讨论:(i)当 时, 为一对相异的负实根,则微分方程(3-38)的一般解可表示为:4MaTT1 2,1212ttBnc ec en(3-39)根据上式绘出过渡过程中曲线如图图3.17a所示。图3.17 他励直流电动机的过渡过程曲线(ii)当 时, 为一对具有负实部的共轭实根: ,其中, , 。4MaTT1 2,1 2j ,12aT4112aaMTTT此时,微分方程(3-38)的一般解可表示为:sin()tBnAetn根据上式绘出过渡过程中的曲线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论