10氨基酸生产_第1页
10氨基酸生产_第2页
10氨基酸生产_第3页
10氨基酸生产_第4页
10氨基酸生产_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二节 氨基酸生产工艺主讲人:韩北忠 刘 萍第九章第九章 发酵工程各论发酵工程各论 氨基酸是构成蛋白成分 目前世界上可用发酵法生产氨基酸有20多种。Introduction History of amino acids production:The story of started in 1908 Isolated glutamic acid, delicious tasteScreen for amino-acid-excreting microorganisms:Corynebacterium glutamicum, In 1957.Monosodium glutamate (MSG):A

2、 flavor-enhancing compound (Umami)氨基酸 碳原子分别以共价键连接氢原子、羧基和氨基及侧链。侧链不同,氨基酸的性质不同。氨基酸的用途1. 食品工业: 强化食品(赖氨酸,苏氨酸,色氨酸于小麦中) 增鲜剂:谷氨酸单钠和天冬氨酸 苯丙氨酸与天冬氨酸可用于制造低热量二肽甜味剂(-天冬酰苯丙氨酸甲酯),此产品1981年获FDA批准,现在每年产量已达数万吨。 2. 饲料工业: 甲硫氨酸等必需氨基酸可用于制造动物饲料 3. 医药工业: 多种复合氨基酸制剂可通过输液治疗营养或代谢失调 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气对骨髓肿瘤治疗有效,且副作用低。 4. 化学工业:谷氨

3、基钠作洗涤剂,丙氨酸制造丙氨酸纤维。Introduction Amino acids are used for a variety of purposesFood Industry:Flavor enhancer; Sweetener (Glycine)Chemical Industry:Building blocks of compoundsPharmaceutical Industry:In Infusion; in special dietary food(essential amino acid)Animal feed additive:Feedstuff; eg. Soybean -

4、 methionineLeu, Ile, Lys, Phe, Met, Trp, Val, Thr, Arg, HisIntroduction The barrel represents the nutritive value of soybean meal, which is first limited by its methionine content. Production methods and tools Classical strain development:Bacteria do not normally excrete amino acids in significant a

5、mountsbecause regulatory mechanisms control the amino acid synthesis in an economical way.A great number of amino-acid-producing bacteria have been derived by mutagenesis and screening programmes. Production methods and tools Consecutive application:Undirected mutagenesis;Selection for a specific ph

6、enotype;Selection of the mutant with the best AA accumulationProduction methods and tools Application of recombinant techniques:To rapidly develop new producers by increasing limiting enzyme activities;To analyse mechanisms of flux control;To combine this knowledge with classically obtained strains

7、for their further development氨基酸的生产方法 发酵法: 直接发酵法:野生菌株发酵、营养缺陷型突变发酵、抗氨基酸结构类似物突变株发酵、抗氨基酸结构类似物突变株的营养缺陷型菌株发酵和营养缺陷型回复突变株发酵。 添加前体法 酶法:利用微生物细胞或微生物产生的酶来制造氨基酸。 提取法:蛋白质水解,从水解液中提取。胱氨酸、半胱氨酸和酪氨酸 合成法:DL-蛋氨酸、丙氨酸、甘氨酸、苯丙氨酸。 传统的提取法、酶法和化学合成法由于前体物的成本高,工艺复杂,难以达到工业化生产的目的。 生产氨基酸的大国为日本和德国。 日本的味之素、协和发酵及德国的德固沙是世界氨基酸生产的三巨头。它们能

8、生产高品质的氨基酸,可直接用于输液制剂的生产。 日本在美国、法国等建立了合资的氨基酸生产厂家,生产氨基酸和天冬甜精等衍生物。 国内生产氨基酸的厂家主要是天津氨基酸公司,湖北八峰氨基酸公司,但目前无论生产规模及产品质量还难于与国外抗衡。 在80年代中后期,我国从日本的味之素、协和发酵以技贸合作的方式引进输液制剂的制造技术和仿造产品,1991年销售量为二千万瓶,1996年达六千万瓶,主要厂家有无锡华瑞,北京费森尤斯,昆明康普莱特,但生产原料都依赖进口。 据专家估计,到2000年,世界氨基酸产值可达45亿美元,占生物技术市场的7%,国内的氨基酸产值可达40亿元,占全国发酵产业总产值的12%。 氨基酸

9、发酵生产发展的历史回顾 所谓氨基酸发酵,就是以糖类和铵盐为主要原料的培养基中培养微生物,积累特定的氨基酸。 这些方法成立的一个重要原因是使用选育成的氨基酸生物合成高能力的菌株。菌株的育种 从自然界中筛选有产酸能力的菌株,并建立其培养条件. 在确立突变技术和阐明氨基酸生物合成系统调节机制的基础上发展为营养缺陷变异株、抗药性菌株的育种。 随着重组DNA技术的发展,接合、转导、转染、细胞融合等手段首先用于体内基因重组,是早期用基因重组方法构建生产菌株的尝试。 随着载体、受体系统的构建及体外基因重组技术的日益完善,氨基酸生物工程菌的构建有了长足的发展。 苏氨酸等的生产菌株被成功地构建并应用于工业化生产

10、。2.1用野生株的方法 这是从自然界获得的分离菌株进行发酵生产的一种方法。 典型的例子就是谷氨酸发酵。 改变培养条件的发酵转换法中,有变化铵离子浓度、磷酸浓度,使谷氨酸转向谷氨酰胺和缬氨酸发酵 2.2用营养缺陷变异株的方法 这一方法是诱变出菌体内氨基酸生物合成某步反应阻遏的营养缺陷型变异体,使生物合成在中途停止,不让最终产物起控制作用。 这种方法中有用高丝氨酸缺陷株的赖氨酸发酵,有用精氨酸缺陷株的鸟氨酸发酵,还有用异亮氨酸缺陷株的脯氨酸发酵。 2.3类似物抗性变异株的方法 用一种与自己想获得的氨基酸结构相类似的化合物加入培养基内,使其发生控制作用,从而抑制微生物的生长。这样,就可以得到在这种培

11、养基中能够生长的变异株,而这种变异株正是解除了调控机制的,能够生成过量的氨基酸。 利用此方法发酵的有:苏氨酸、赖氨酸、异亮氨酸、组氨酸和精氨酸。 2.4 体内及体外基因重组的方法 基因工程包括细胞内基因重组方法和试管内的体外基因重组方法。 体内基因重组在应用上又称为杂交育种,主要方法包括:转化、转染、接合转移、转导和细胞融合等,这都是在细胞内暂时地产生染色体的局部二倍体,在两条DNA链之间引起两次以上的交叉,是遗传性重组现象。 细胞内基因重组技术的缺点是,现在只在同种或有近缘关系的微生物之间进行并较难成功。 代谢工程在阐明代谢途径及其调控规律的基础上,应用重组DNA技术可以改变代谢途径分支点上

12、的流量或引入新的代谢步骤与构建新的代谢网络。 其主要步骤为: 鉴定目标代谢途径涉及的酶(特别是限速酶); 取得酶基因,必要时可用蛋白质工程技术,如定点诱变,基因剪接等,使蛋白具有新的特点(增强活性或稳定性、解除反馈抑制等); 将一种或多种异源的或改造后的酶基因与调节元件一起克隆进目标生物; 使调节元件的作用及培育条件最优化。 3.1载体-受体系统及克隆表达的研究 3.1.1受体的获得 目前使用的氨基酸工程菌受体主要是大肠杆菌K-12及棒状杆菌家族,通常是通过诱变选育出的基础产率较高的菌株。 大肠杆菌遗传背景研究得清楚,载体系统完善,利于工程菌的构建,但它含有内毒素且不能将蛋白产物分泌至胞外,为

13、应用带来困难。 棒状杆菌能克服这两个缺点,但载体受体系统研究较晚且有限制修饰系统的障碍,所以获得利于外源基因导入及表达且能稳定遗传的受体菌是尚待解决的问题。 3.1.2载体的构建 有效的载体需要有在受体菌中可启动的复制起始位点,这可从棒状杆菌家族内源小质粒中获得; 载体所需的筛选标记及外源基因插入的多克隆位点,可从常用的克隆载体中获得。 3.1.3基因转移手段 由于棒状杆菌是革兰氏阳性菌,CaCl2转化法对它不适用。 通常采用的方法有:原生质体转化、转导,电转化,接合转移。 原生质体转化的方法是较早采用的方法,由于受到原生质体再生条件的局限,效率不高; 电转化方法由于高效,快速被广泛使用,目前

14、它的转化效率可达到原生质体转化法的1001000倍。 接合转移可用于基因在亲缘关系远的物种之间的转移,并且可将外源基因整合于染色体上,易于稳定遗传。 氨基酸发酵的代谢控制 控制发酵的条件 控制细胞渗透性 控制旁路代谢 降低反馈作用物的浓度 消除终产物的反馈抑制与阻遏作用 促进ATP的积累,以利氨基酸的生物合成控制发酵的条件 专性需氧菌,控制环境条件可改变代谢途径和产物。控制细胞渗透性生物素、油酸和表面活性剂,引起细胞膜的脂肪酸成分的改变。青霉素:抑制细胞壁的合成,由于细胞面内外的渗透压而泄露出来。控制旁路代谢降低反馈作用物的浓度 利用营养缺陷型突变株进行氨基酸发酵必须限制所要求的氨基酸的量。限

15、制精氨酸的浓度可解除反馈抑制,实现鸟氨酸的生物合成。消除终产物的反馈抑制与阻遏作用 使用抗氨基酸结构类似物突变株的方法。促进ATP的积累,以利氨基酸的生物合成 ATP的积累可促进氨基酸的生物合成氨基酸发酵的工艺控制 培养基 pH 温度 氧培养基 1、碳源:淀粉水解糖、糖蜜淀粉水解糖、糖蜜、醋酸、乙醇、烷烃 碳源浓度过高时,对菌体生长不利,氨基酸的转化率降低。 菌种性质、生产氨基酸种类和所采用的发酵操作决定碳源种类2、氮源:铵盐、尿素、氨水; 同时调整pH值。 营养缺陷型添加适量氨基酸主要以添加有机氮源水解液。 需生物素和氨基酸,以玉米浆作氮源。 尿素灭菌时形成磷酸铵镁盐,须单独灭菌。可分批流加

16、。 氨水用pH自动控制连续流加 3、合适C/N 氮源用于调整pH。 合成菌体 生成氨基酸,因此比一般微生物发酵的C/N高。 4、磷酸盐:对发酵有显著影响。不足时糖代谢受抑制。 5、镁:是已糖磷酸化酶、柠檬酸脱氢酶和羧化酶的激活剂,并促进葡萄糖-6-磷酸脱氢酶活力。 6、钾:促进糖代谢。谷氨酸产酸期钾多利于产酸,钾少利于菌体生长。 7、钠:调节渗透压作用,一般在调节pH值时加入。 8、锰:是许多酶的激活剂。 9、铁:是细胞色素、细胞色素氧化酶和过氧化氢酶的活性基的组成分,可促进谷氨酸产生菌的生长。 10、铜离子:对氨基酸发酵有明显毒害作用。 生长因子:生物素 作用:影响细胞膜透性和代谢途径。 浓

17、度:过多促进菌体生长,氨基酸产量低。过少菌体生长缓慢,发酵周期长。 与其它培养条件的关系:氧供给不足,生物素过量时,发酵向其它途径转化。 种类:玉米浆、麸皮水解液、甘蔗糖蜜和甜菜糖蜜为来源。pH对氨基酸发酵的影响及其控制 作用机理:主要影响酶的活性和菌的代谢。 控制pH方法:流加尿素和氨水 流加方式:根据菌体生长、pH变化、糖耗情况和发酵阶段等因素决定。 控制: (1)菌体生长或耗糖慢时,少量多次流加尿素,避免pH过高 (2)菌体生长或耗糖过快时,流加尿素可多些,以抑制菌体生长。 (3)发酵后期,残糖少,接近放罐时,少加或不加尿素,以免造成氨基酸提取困难。 (4)氨水对pH影响大,应采取连续流

18、加。温度对氨基酸发酵的影响及其控制 菌体生长达一定程度后再开始产生氨基酸,因此菌体生长最适温度和氨基酸合成的最适温度是不同的。 菌体生长温度过高,则菌体易衰老,pH高,糖耗慢,周期长,酸产量低。 采取措施:少量多次流加尿素,维持最适生长温度,减少风量等,促进菌体生长。氧对氨基酸发酵的影响及其控制 要求供氧充足的谷氨酸族氨基酸发酵:生物合成与TCA循环有关。 适宜在缺氧条件下进行的亮氨酸、苯丙氨酸和缬氨酸发酵:菌体呼吸受阻时产量最大。 供氧不足时产酸受轻微影响的天冬氨酸族氨基酸发酵谷氨酸生产工艺 工业化生产开始于由水解小麦面筋或大豆蛋白质而制取。 1957年,日本率先采用微生物发酵法生产,并投入

19、大规模工业化生产,这是被誉为现代发酵工业的重大创举,使发酵工业进入调节代谢的调控阶段。 目前世界产谷氨酸钠30吨/年,占氨基酸总量的2/3。 我国现已有200余家生产,年产量达15万吨,居世界首位。 产生菌株特点: 革兰氏阳性 不形成芽胞 没有鞭毛,不能运动 需要生物素作为生长因子 在通气条件下才能产生谷氨酸。 谷氨酸生物合成机理: 由三羧酸循环中产生的a-酮戊二酸,在谷氨酸脱氢酶和氢供体存在下进行还原性氨化作用而得到。 一、淀粉水解糖的制备:酸水解或酶水解 1、调浆:干淀粉用水调成10-11Bx的淀粉乳,加盐酸0.5-0.8至pH1.5。 2、糖化:蒸汽加热,加压糖化25min。冷却至80下

20、中和。 3、中和:烧碱中和,至pH4.0-5.0 4、脱色:活性炭脱色和脱色树脂。活性炭用量为0.6-0.8,在70度及酸性条件下搅拌后过滤。 酶法糖化:以大米或碎米为原料时采用 大米进行浸泡磨浆,再调成15Bx,调pH6.0,加细菌a-淀粉酶进行液化,85 30min,加糖化酶60 糖化24h,过滤后可供配制培养基。 糖蜜原料:不宜直接用来作为谷氨酸发酵的碳源,因含丰富的生物素。 预处理方法:活性碳或树脂吸附法和亚硝酸法吸附或破坏生物素。也可以在发酵液中加入表面活性剂吐温60或添加中青霉素。 二、菌种扩大培养 1、斜面培养:主要产生菌是棒状杆菌属、短杆菌属、小杆菌属、节杆菌属。 我国各工厂目

21、前使用的菌株主要是钝齿棒杆菌和北京棒杆菌及各种诱变株。 生长特点:适用于糖质原料,需氧,以生物素为生长因子。 斜面培养基:蛋白胨、牛肉膏、氯化钠组成的pH7.0-7.2琼脂培养基,32培养18-24h。 2、一级种子培养:由葡萄糖、玉米浆、尿素、磷酸氢二钾、硫酸镁、硫酸铁及硫酸锰组成。pH6.5-6.8。1000ml装200-250ml振荡,32 培养12h。 3、二级种子培养:用种子罐培养,料液量为发酵罐投料体积的1,用水解糖代替葡萄糖,于32 进行通气搅拌7-10h。种子质量要求:二级种子培养结束时,无杂菌或噬菌体污染,菌体大小均一,呈单个或八字排列。活菌数为108-109 /ml。三、谷

22、氨酸发酵 1、适应期:尿素分解出氨使pH上升。糖不利用。2-4h。 措施:接种量和发酵条件控制使期缩短。 2、对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降。溶氧急剧下降后维持在一定水平。菌体浓度迅速增大,菌体形态为排列整齐的八字形。不产酸。12h。 措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32 3、菌体生长停止期:谷氨酸合成。 措施:提供必须的氨及pH维持在7.2-7.4。大量通气,控制温度34-37 。 4、发酵后期:菌体衰老,糖耗慢,残糖低。 措施:营养物耗尽酸浓度不增加时,及时放罐。 发酵周期一般为30h。Production Process of L-Glutamic acid Sketch of main reaction in Corynebacterium glutamicumConnected with the citric acid cycly谷氨酸发酵控制 (1)生物素:作为催化脂肪酸生物合成最初反应的关键酶乙酰CoA的辅酶,参与脂肪酸的生物合在,进而影响磷酯的合成。 当磷酯含量减少到正常时的一半左右时,细胞发生变形,谷氨酸能够从胞内渗

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论