2022年华师大版《函数的图象》公开课教案_第1页
2022年华师大版《函数的图象》公开课教案_第2页
2022年华师大版《函数的图象》公开课教案_第3页
2022年华师大版《函数的图象》公开课教案_第4页
2022年华师大版《函数的图象》公开课教案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、函数的图象第1课时课题函数的图象第1课时教学目标知识目标:1.理解平面直角坐标系的有关概念,并会正确画出平面直角坐标系.2.能根据点的位置确定点的坐标,能根据点的坐标描点.能力目标 :联系数轴知识、统计图知识,经历探索平面直角坐标系的概念的过程;通过学生积极动手画图,到达训练的程度,并充分感受直角坐标系上的点和有序实数对是一一对应的含义.情感目标 :儿创立直角坐标系的背景知识,鼓励学生敢于探索,勇攀科学顶峰.重点能在给定的平面直角坐标系中,由点求出坐标,由坐标描出点难点探索象限内点的特征与坐标轴上点的特征,以及它们特征的简单运用.教 学 过 程创设情境:你知道四川大地震的地理位置吗?北京时间2

2、021年5月12日14时28分,在四川汶川县(北纬31.0度,东经103.4度)发生7.8级地震。重庆、山西、陕西、湖北等地有震感。14时35分左右,北京通州发生3.9级地震。问题1 例如你去过电影院吗?还记得在电影院是怎么找座位的吗?在数学中,我们可以用一对有序实数来确定平面上点的位置为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴如图,这就建立了平面直角坐标系(rightangled coordinates system)通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点在平面直角坐标系中,任意一点都可

3、以用一对有序实数来表示例如,图中的点P,从点P分别向x轴和y轴作垂线,垂足分别为M和N这时,点M在x轴上对应的数为3,称为点P的横坐标;点N在y轴上对应的数为2,称为点P的纵坐标(ordinate)依次写出点P的横坐标和纵坐标,得到一对有序实数(3,2),称为点P的坐标(coordinates)这时点P可记作P(3,2)在直角坐标系中,两条坐标轴把平面分成如以下图的、四个区域,分别称为第一、二、三、四象限坐标轴上的点不属于任何一个象限实践应用例1在上图中分别描出坐标是(2,3)、(2,3)、(3,2)的点Q、S、R,Q(2,3)与P(3,2)是同一点吗?S(2,3)与R(3,2)是同一点吗?例

4、2教材P35写出图中的点A、B、C、D、E、F的坐标观察你所写出的这些点的坐标,答复:(1)在四个象限内的点的坐标各有什么特征?(2)两条坐标轴上的点的坐标各有什么特征?检测反响1.判断以下说法是否正确:(1)(2,3)和(3,2)表示同一点; (2)点(4,1)与点(4,1)关于原点对称;(3)坐标轴上的点的横坐标和纵坐标至少有一个为0;(4)第一象限内的点的横坐标与纵坐标均为正数2.如图是一个围棋棋盘,我们可以用类似于直角坐标系的方法表示各个棋子的位置例如,图中右下角的一个棋子可以表示为(12,十三)请至少说出图中四个棋子的“位置3.填空: (1)点P(5,3)关于x轴对称点的坐标是 ;(

5、2)点P(3,5)关于y轴对称点的坐标是; (3)点P(2,4)关于原点对称点的坐标是交流反思1.平面直角坐标系的有关概念及画法;2.在直角坐标系中,根据坐标找出点;由点求出坐标的方法;3.在四个象限内的点的坐标特征;两条坐标轴上的点的坐标特征;第一、三象限角平分线上点的坐标特征;第二、四象限角平分线上点的坐标特征;4.分别关于x轴、y轴及原点的对称的两点坐标之间的关系课后作业课 后 反 思板 书 设 计第1课时 正切与坡度教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点: 理解并掌握正切的含义,会在直角三角形中求出某个锐角

6、的正切值。教学难点: 计算一个锐角的正切值的方法。教学过程:一、观察答复:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。以以下图中的两个台阶哪个更陡?你是怎么判断的?图1 图2点拨可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢? 可通过测量BC与AC的长度, 再算出它们的比,来说明台阶的倾斜程度。思考:BC与AC长度的比与台阶的倾斜程度有何关系?答:_. 讨论:你还可以用其它什么方法?能说出你的理由吗?答:_.2、思考与探索二:AC1C2AC3B1B2B31如图,一般地,如果锐角A

7、的大小已确定,我们可以作出无数个相似的RtAB1C1,RtAB2C2,RtAB3C3,那么有:RtAB1C1_根据相似三角形的性质,A对边bC对边aB斜边c得:_2由上可知:如果直角三角形的一个锐角的大小已确定,那么这个锐角的对边与这个角的邻边的比值也_。3、正切的定义如图,在RtABC中,C90°,a、b分别是A的对边和邻边。我们将A的对边a与邻边b的比叫做A_,记作_。即:tanA_你能写出B的正切表达式吗?试试看.4、牛刀小试BCA1根据以以下图中所给条件分别求出以以下图中A、B的正切值。BAC35A2C1B通过上述计算,你有什么发现?_.5、思考与探索三:怎样计算任意一个锐角

8、的正切值呢?1例如,根据书本P39图75,我们可以这样来确定tan65°的近似值:当一个点从点O出发沿着65°线移动到点P时,这个点向右水平方向前进了1个单位,那么在垂直方向上升了约2.14个单位。于是可知,tan65°的近似值为2.14。2请用同样的方法,写出下表中各角正切的近似值。10°20°30°45°55°65°tan3利用计算器我们可以更快、更精确地求得各个锐角的正切值。4思考:当锐角越来越大时,的正切值有什么变化?ABACBADCBAECBA三、随堂练习1、在RtABC中,C90°,AC1,AB3,那么tanA_,tanB_。2、如图,在正方形ABCD中,点E为AD的中点,连结EB,设EBA,那么tan_。四、请你说说本节课有哪些收

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论