《数列的概念与简单表示法》-教学设计_第1页
《数列的概念与简单表示法》-教学设计_第2页
《数列的概念与简单表示法》-教学设计_第3页
《数列的概念与简单表示法》-教学设计_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数列的概念一、 教学目标<1>了解数列的概念通过实例,引入数列的概念, 并理解数列的顺序性, 感受数列是刻画自然规律的数学模型。同时了解数列的几种分类。<2>了解数列是一种特殊的函数了解数列是一类离散函数, 体会数列之间的变量依赖关系, 了解数列与函数之间的关系。二、教学重点与难点<1>教学重点: 了解数列的概念,以及数列是一种特殊函数,体会数列是反映自然规律的数学模型。<2>教学难点:将数列作为一种特殊函数去认识, 了解数列与函数之间的关系。三、教学过程第一课时<1>创设情境,实例引入1、引导学生观察 P26 章节前的知识背景图片,

2、构建自然现象中体现出的数的规律。留下问题思考:你能发现下面这一列数的规律吗1,1,2., 3,5,8,13,21, 34,55,89,.(我们先一起来观察一下课本 P26 的这幅大图,大家来数数这些花各有几片花瓣。我们发现,第一朵花有 3 片花瓣,第二朵花有 5 片花瓣,第三朵花有 8 片花瓣,第四朵花有 13 片花瓣。那大家来观察一下书上的那一组数: 1,1,2.,3,5,8,13,21,34,55,89,.,你能发现它们有什么规律吗?带着这个问题,我们要来探讨一个有关数的新问题。 )2、引导学生观察课本 P28 的两幅图 -三角形数与正方形数,进而引出数列的概念。(大家都知道古希腊拥有着灿

3、烂的文明, 它的数学文化同样值得我们去探究。 古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题, 他们在沙滩上画点或用小石子来表示数, 书本上的这两幅图正是他们所研究的一小部分, 即三角形数与正方形数。大家一起来观察一下, 在三角形数这幅图中每个图形分别对应着数1,3,6,10.,而在正方形数这幅图中每个图形分别对应着数1, 4, 9, 16.,大家能发现它们的共同特点吗?每个图形代表的数与在图中的序列号有没有什么联系呢?这样的一组数我们在数学上称之为数列。 现在我们一起来认识这个全新的概念:数列。)<2>概念的提出1、数列( sequence of number):按照一定顺

4、序排列着的一列数(我们可以借助它的专业英语对这一概念进行理解,我们知道 sequence 在英语中表示序列、顺序,故而顾名思义, sequence of number 即数列表示这一列数的排列顺序。)联系生活中的数列实例:银行利息(在了解了数列的概念之后,大家能否举出一些生活中的数列的例子呢?大家知道我们把钱存进银行, 我们账户上的存款除了我们本身存进去的钱还包括一定的利息,我们会发现每一个单位时间内我们帐户的利息的值是按照一定的顺序排列起来的。 再如,有养过兔子的同学会发现兔子产出的小兔子数量也可以构成一个数列。)2、项:数列中的每一个数称为这个数列的项(我们知道,由数列的概念进行解读,数列

5、是按照一定顺序排列起来的一组数,故而数列中的每一项都和它的序号有关。 )我们称排在第一位的数为这个数列的第一项或首项, 称排在第二位的数为这个数列的第二项, .,(以此类推)称排在第 n 位的数为这个数列的第 n 项。故而,数列的一般形式可以写成a1 , a2 , a3 ,.an ,.简记为 an<3>数列的分类(我们可以按照数列的特点进行适当地分类。)1、按照数列的项数进行分类项数有限的称为有穷数列项数无限的称为无穷数列2、按照数列中数的大小特点进行分类每一项都大于它的前一项的数列称为递增数列从第 2 项起,每一项都小于它的前一项的数列称为递减数列各项相等的数列称为常数列从第二项

6、起,有些项大于它的前一项, 有些项小于它的前一项的数列称为摆动数列(现在我们根据数列的分类来判断一下课本 P28 的几个数列是属于哪一类数列)练习 P28-观察<4>数列与函数的关系(我们再来观察一下数列的特点, 大家是否有发现数列中的数与它所对应的序列号的关系呢?大家是否可以联想到从前学习的某些内容呢?提问学生。 )事实上,数列可以看成以正整数集N* (或它的有限子集 1,2,3,。,n)为定义域的函数 anf (n) 当自变量按照从小到大的顺序依次取值时所对应的一列函数值。对于函数 yf (x) ,如果 f (i)(i1,2,3.) 有意义,那我们就可以得到一个数列f (1),

7、 f (2), f (3),. f (n),.<5>归纳小结(我们今天一同认识了一个新的概念: 数列,我们知道它是一个与现实生活有密切联系的数学概念,我们一同来回忆一下数列的概念,数列的两种分类。另外,我们发现数列实质上是一种特殊的函数。 )回顾数列的概念,数列的两种分类以及数列的实质:是一种特殊的函数。<6>作业布置P33习题2.1A组 1第二课时<1>数列的简单表示法的学习1、通项公式(在上节课的学习中, 我们一同认识了数列这个新的数学概念, 得知可以将其定义为一种特殊的函数,在此基础上,我们可以这样提出: )如果数列an 的第 n 项与序号 n 之间的

8、关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式,我们可以根据数列的通项公式写出数列。练习:课本例 1写出下面数列的一个通项公式,使它的前4 项分别是下列各数:1 11(1) 1,-,-2 34(2) 2,0,2,0解:( 1)这个数列的前 4 项的绝对值都是序号的倒数,并且奇数项为正,偶数项为负,( 1) n 1故它的一个通项公式为ann另一种表示法:an1 (n 2m,m 1,2,3,.)n1 (n 2m 1,m 1,2,3,.)n( 2)这个数列的前 4 项构成一个摆动数列, 奇数项是 2,偶数项是 0,所以它的通项公式为an( 1)n 112、图象、列表法(我们一同来回忆一

9、下函数的集中表示方法,函数常用的三个表示法为解析法、列表法、图象法。数列作为一种特殊的函数, 自然拥有函数的一般性质。 事实上,数列的通项公式可以相对应于函数的解析式, 同样数列也可以用图象和列表来表示。)例如:全体正偶数按从小到大的顺序构成数列2,4,6,. ,2n, .则该数列可以用列表和图表分别表示出来(表2-1 和图 2.1-4)练习:课本 P30 例 2图 2.1-5 中的三角形称为谢宾斯基( Sierpinski)三角形。在下图四个三角形中,着色三角形的个数依次构成一个数列的前 4 项,请写出这个数列的一个通项公式,并在直角坐标系中画出它的图像。解:如图,这四个三角形中着色三角形的

10、个数依次为 1,3,9,27则可知所求数列的前四项都是 3 的指数幂,指数为序号减 1.所以,这个数列的一个通项公式为an3n 1则可在直角坐标系中作出该数列图象如图2.1-6(大家可以从图上发现数列的图象是一些离散的点, 大家想想是为什么呢?主要是由于数列中自变量的取值是一系列离散的点。 )3、递推公式(在一个由拥有某些共同点的个体组成的总体中, 允许个体存在个性。 数列作为一种特殊的函数,自然有其个性,我们一起来研究一下这一个个性。 )如果一个数列 an 的首项为 a1 =1,从第二项起每一项等于它的前一项的2 倍再加上 1,即an 2an 11( n1) ,a22a113那么 a32a217.像这样给出数列的方法称为递推法我们将 an2an 11( n 1) 称作递推公式。练习:课本 P31例 3a111 (n 1) ,请写出这个数列的前五项。设数列 an满足an1an 1解:由题意可知a11,a211112,a11a3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论