版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、全等三角形辅助线全等三角形辅助线专题讲座专题讲座 通江县第二中学通江县第二中学 刘仕平刘仕平1知识要点:知识要点: 判定三角形全等方法有SAS、ASA、AAS、SSS和HL 如果题目给出的条件不全,就需要根据已知的条件结合相应的公理、定理来进行分析,先推先推导出所缺的条件然后再证明导出所缺的条件然后再证明。 一些较难的证明题要添加适当的辅助线添加适当的辅助线构造合适的全等三角形,把条件相对集中起来,再进行等量代换,问题就可以迎刃而解了。 2构造辅助线的方法:构造辅助线的方法: 1. 连线法连线法 2截长补短法截长补短法 3作平行线法:作平行线法:若题设中含有中点可以试过中点作平行线或中位线,对
2、Rt,有时可作出斜边的中线 4倍长中线法:倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将分散条件集中在一个三角形内 5翻折法:翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形 3通过连线通过连线, ,构造全等三角形构造全等三角形4例例1. 1.如图如图,AB=AD,BC=DC,AB=AD,BC=DC,求证求证:B=D.:B=D.ACBD连结连结ACAC构造全等三角形构造全等三角形5连线连线 构造全等构造全等例例2. 2.如图如图,AB,AB与与CDCD交于交于O, O, 且且AB=CDAB=CD,AD=BCAD=BC,OB=5c
3、mOB=5cm,求,求ODOD的长的长. .连结连结BDBD构造全等三角形构造全等三角形ACBDO62截长补短法(通常用来证明线段和差相等)截长补短法(通常用来证明线段和差相等) “截长法截长法”即把结论中最大的线段根据已知条即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方然后证明余下的线段与另一条线段相等的方法法 “补短法补短法”即即把两条线段中的一条补长成为把两条线段中的一条补长成为一条长线段,然后证明补成的线段与较长的一条长线段,然后证明补成的线段与较长的线段相等,或是把一条较短的线段加长,使
4、线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分它等于较长的一段,然后证明加长的那部分与另一较短的线段相等。与另一较短的线段相等。7 例例3.3.如图如图AC/BD,EA、EB分别平分分别平分CAB、DBA,CD过点过点E,求证:,求证:AB=AC+BD. 分析:本题是线段和差问题的证明,基本方法是截长补短法,即在分析:本题是线段和差问题的证明,基本方法是截长补短法,即在ABAB上截取上截取AFAF,使,使AF=ACAF=AC,这样,只要证明,这样,只要证明FB=BDFB=BD即可,于是将问题转化为证明两线段相等。即可,于是将问题转化为证明两线段相等。8证明:证明:
5、在在AB上取点上取点F,使,使AF=AC,连结,连结EFEA平分平分CABCAE=FAECAE FAE(SAS)C=AFEACBDC+D=180又又AFE+BFE=180D=BFEEB平分平分ABDEBF=EBDBFE BDE(AAS)BD=BFAB=AF+BFAB=AC+BD9m = 42.35m = 42.23例例4 4.已知在已知在ABC中,中,C=2B, 1=2求证求证:AB=AC+CDADBCE12在在AB上取点上取点E使得使得AE=AC,连接,连接DE截长截长F在在AC的延长线上取点的延长线上取点F使得使得CF=CD,连接,连接DF补短补短103作平行线法作平行线法 如果题目中含有
6、中点,可以通过中点作如果题目中含有中点,可以通过中点作平行线平行线 对于对于RtRt, ,有时可作出斜边的中线有时可作出斜边的中线11 例例5.如图,如图,ABC中,中,ABAC。E是是AB上异于上异于A、B的任意一点,延长的任意一点,延长AC到到D,使,使CDBE,连接,连接DE交交BC于于F。求证:。求证:EFFD。124倍长中线法倍长中线法 如果题中条件有中线,可将中线延长一倍,如果题中条件有中线,可将中线延长一倍,以构造全等三角形,从而将分散条件集中以构造全等三角形,从而将分散条件集中在一个三角形内。在一个三角形内。13 例例6.如图如图1,AD是是ABC的中线,求证:的中线,求证:A
7、BAC2AD14 例例7.如图,如图,AD为为ABC的中线,的中线,ADB、ADC的的平分线交平分线交AB、AC于于E、F。求证:。求证:BE+CFEF 分析:本题中已知分析:本题中已知D D为为BCBC的中点,要证的中点,要证BEBE、CFCF、EFEF间的不等关系,可利用点间的不等关系,可利用点D D将将BEBE旋转,使这三条线段在同一个三角形内。旋转,使这三条线段在同一个三角形内。155翻折法翻折法 沿角平分线翻折构造全等三角形沿角平分线翻折构造全等三角形 沿高线翻折构造全等三角形沿高线翻折构造全等三角形 绕点旋转构造全等三角形绕点旋转构造全等三角形16证明:已知:如图,在四边形ABCD
8、中,BD是ABC的角平分线,AD=CD,求证:A+C=180DABCE在BC上截取BE=AB,连结DE。 BD是ABC的角平分线(已知)1=2(角平分线定义)在ABD和EBD中 AB=EB(已知) 1=2(已证) BD=BD(公共边)ABD EBD(S.A.S)1243 3+ 4180(平角定义),A3(已证)A+ C180 (等量代换) A3(全等三角形的对应角相等) AD=CD(已知),AD=DE(已证)DE=DC(等量代换)4=C(等边对等角)AD=DE(全等三角形的对应边相等)例例8.17 例例9.如图,在如图,在ABC中,中,12,ABC2C。 求证:求证:ABBDAC。18初中几何
9、常见辅助线作法口诀初中几何常见辅助线作法口诀人说几何很困难,难点就在辅助线。人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。还要刻苦加钻研,找出规律凭经验。 19三三 角角 形形 图中有角平分线,可向两边作垂线。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段垂直平分线,常向两端把线连。 要证线
10、段倍与半,延长缩短可试验。要证线段倍与半,延长缩短可试验。 三角形中有中线,延长中线等中线。三角形中有中线,延长中线等中线。 20 21 1.利用三角形的角平分线来构造全等利用三角形的角平分线来构造全等三角形三角形 如图,在ABC中,AD平分BAC。方法一:ABCDE必有结论:在AB上截取AE=AC,连结DE。ADE ADC。ED=CDAED=CADE=ADC。22方法二:ABCDF延 长 A C 到 F , 使AF=AB,连结DF。必有结论:ABD AFD。BD=FD 如何利用三角形的角平分线来构造全等三角形?问题: 如图,在ABC中,AD平分BAC。 可以利用角平分线所在直线作对称轴,翻折
11、三角形来构造全等三角形。B=FADB=ADF。23 如何利用三角形的角平分线来构如何利用三角形的角平分线来构造全等三角形?造全等三角形?问题:ABCDMN方法三:作 D M A B 于 M ,DNAC于N。必有结论:AMD ADN。DM=DN3*21 如图,在ABC中,AD平分BAC。 可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。AM=ANADM=ADN(还可以用“角平分线上的点到角的两边距离相等”来证DM=DN)24如图,已知ABC中,AD是BAC的角平分线,AB=AC+CD,求证:C=2BABCDE12证明:在AB上截取AE,使AE=AC,连结DE。 AD是BAC的角平分
12、线(已知)1=2(角平分线定义)在AED和ACD中 AE=AC(已知) 1=2(已证) AD=AD(公共边)AED ACD(S.A.S)3B=4(等边对等角)4 C3(全等三角形的对应角相等)又 AB=AC+CD=AE+EB(已知)EB=DC=ED(等量代换) 3= B+4= 2B(三角形的一个外角等于和它不相邻的两个内角和)C=2B(等量代换)ED=CD(全等三角形的对应边相等)25如图,已知ABC中,AD是BAC的角平分线,AB=AC+CD,求证:C=2BABCDF12证明:延长AC到F,使CF=CD,连结DF。 AD是BAC的角平分线(已知)1=2(角平分线定义) AB=AC+CD,CF=CD(已知) AB=AC+CF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版企业破产重整合同
- 2024年度无息个人婚礼筹备借款协议书下载3篇
- 2025年日喀则货运资格证模拟考试
- 2024年停薪留职期间员工社会保险及福利协议合同3篇
- 2025购房合同的范本 购房合同样本
- 2025年柳州货运从业资格证考试卷
- 洛阳理工学院《内科护理学2》2023-2024学年第一学期期末试卷
- 2024年墓地环境优化协议3篇
- 汽车俱乐部喷泉建设合同
- 2024年度家电品牌全国巡回展销合同范本3篇
- 【MOOC】法理学-西南政法大学 中国大学慕课MOOC答案
- 辽宁省普通高中2024-2025学年高一上学期12月联合考试语文试题(含答案)
- 储能运维安全注意事项
- 2024蜀绣行业市场趋势分析报告
- 电力法律法规培训
- 北京交通大学《成本会计》2023-2024学年第一学期期末试卷
- 2024年世界职业院校技能大赛“智能网联汽车技术组”参考试题库(含答案)
- 【课件】校园安全系列之警惕“死亡游戏”主题班会课件
- 化工企业冬季安全生产检查表格
- 2024年工程劳务分包联合协议
- 蜜雪冰城员工合同模板
评论
0/150
提交评论