




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1全等三角形及性质全等三角形及性质(xngzh)第一页,共18页。生活生活(shnghu)中的全等形中的全等形 追问追问(zhuwn)(zhuwn)你能再举出生活中的一些类似例子吗?你能再举出生活中的一些类似例子吗?第1页/共17页第二页,共18页。生活生活(shnghu)中的全等形中的全等形 问题问题2 2 请同学们思考用复写纸画出两个三角形,并用剪刀剪下请同学们思考用复写纸画出两个三角形,并用剪刀剪下其中一个其中一个(y )(y )三角形,猜想这两个三角形有何关系?三角形,猜想这两个三角形有何关系?第2页/共17页第三页,共18页。全等形的定义:全等形的定义:能够完全重合的两个图形能
2、够完全重合的两个图形(txng)(txng)叫做全等形叫做全等形全等三角形的定义:全等三角形的定义:能够完全重合的两个三角形叫做全等三角形能够完全重合的两个三角形叫做全等三角形全等形、全等三角形及其有关全等形、全等三角形及其有关(yugun)概念概念问题问题3 3 请同学用语言归纳出问题请同学用语言归纳出问题1 1 和问题和问题2 2 中两个图中两个图形形(txng)(txng)有何关系?有何关系?第3页/共17页第四页,共18页。点点A 与点与点D、点、点B 与点与点E、点点C 与点与点F 重合,称为重合,称为(chn wi)对应顶点;对应顶点; 边边AB 与与DE、边、边BC 与与EF、边
3、边AC 与与DF 重合,称为重合,称为(chn wi)对应边;对应边; A 与与D、B 与与E、C 与与F 重合,称为重合,称为(chn wi)对应角对应角. 全等形、全等三角形及其有关全等形、全等三角形及其有关(yugun)概念概念追问追问1 1请同学们将问题请同学们将问题2 2 中的两个三角形分别中的两个三角形分别(fnbi)(fnbi)标标为为ABCABC、DEFDEF,观察这两个三角形有何对应关系?,观察这两个三角形有何对应关系? AB C D E F第4页/共17页第五页,共18页。ABCABC与与DEFDEF是全等的,是全等的,记作:记作:“ABC ABC DEF”DEF”, 读作
4、:读作:“ABC ABC 全等于全等于(dngy)(dngy)DEF”DEF” 全等形、全等三角形及其有关全等形、全等三角形及其有关(yugun)概念概念追问追问2 2你能用符号表示你能用符号表示(biosh)(biosh)出这两个全等三角形出这两个全等三角形吗?吗?AB C D E F第5页/共17页第六页,共18页。图(图(1)中,)中,ABC DEF;图(图(2)中,)中,ABC DBC;图(图(3)中,)中,ABC AED. . 全等形、全等三角形及其有关全等形、全等三角形及其有关(yugun)概念概念问题问题4 4请同学们按照请同学们按照(nzho)(nzho)教材第教材第32 32
5、 页图页图12.1-12.1-2 2 进行平移、翻折、旋转,变换前后的两个三角形还进行平移、翻折、旋转,变换前后的两个三角形还全等吗?全等吗? 追问你能说出它们追问你能说出它们(t men)(t men)的对应顶点、对应边的对应顶点、对应边和对应角吗?和对应角吗?第6页/共17页第七页,共18页。全等三角形的性质全等三角形的性质(xngzh)(xngzh): 全等三角形的对应边相等、全等三角形的对应边相等、对应角相等对应角相等. .全等三角形的性质全等三角形的性质(xngzh)问题问题5 5全等三角形的对应边和对应角有何大小全等三角形的对应边和对应角有何大小(dxio)(dxio)关系?关系?
6、AB C D E F第7页/共17页第八页,共18页。用几何语言表述用几何语言表述(bio sh)(bio sh):ABC ABC DEFDEF, AB =DEAB =DE,BC =EFBC =EF,AC =DFAC =DF (全等三角形的对应边相等),(全等三角形的对应边相等),A =DA =D,B =EB =E,C =FC =F (全等三角形的对应角相等)(全等三角形的对应角相等)全等三角形的性质全等三角形的性质(xngzh)问题问题5 5全等三角形的对应全等三角形的对应(duyng)(duyng)边和对应边和对应(duyng)(duyng)角有角有何大小关系?何大小关系?AB C D E
7、 F第8页/共17页第九页,共18页。例已知:如图,例已知:如图,ABC ABC DEF.DEF.(1 1)若)若DF =10 cmDF =10 cm,则,则AC AC 的长为的长为 ;(2 2)若)若A =100A =100,则:,则: D D 的度数的度数(d shu)(d shu)为为 ;10 cm 100全等三角形的性质全等三角形的性质(xngzh)的运用的运用AB C D E F第9页/共17页第十页,共18页。解:解:A =100A =100,B =30B =30,C =180C =180-A -B -A -B =50 =50 DEF DEF ABC ABC , F =C =50F
8、 =C =50 (全等三角形的对应(全等三角形的对应(duyng)(duyng)角相角相等)等)全等三角形的性质全等三角形的性质(xngzh)的运用的运用例已知:如图,例已知:如图,ABC ABC DEF.DEF.(3 3)若)若A =100A =100,B =30B =30,求,求F F 的度数的度数(d shu).(d shu).AB C D E F第10页/共17页第十一页,共18页。D课堂练习课堂练习练习练习1 1如图,如图,OCA OCA OBDOBD,点,点C C 和点和点B B,点,点A A与点与点D D是对应点,则下列结论是对应点,则下列结论(jiln)(jiln)错误的是(错
9、误的是( ) (A A) COA =BOD COA =BOD ; (B B) A =D A =D ; (C C) CA =BD CA =BD ; (D D) OB =OA OB =OA CBOAD第11页/共17页第十二页,共18页。练习练习2 2ABN ABN ACMACM, ABN ABN 和和ACM ACM 是对是对 应应角,角,AB AB 和和AC AC 是对应边则下列是对应边则下列(xili)(xili)结论错误的是结论错误的是( ) (A A)AMC =ANB AMC =ANB ; (B B)BAN =CAM BAN =CAM ; (C C)BM =MN BM =MN ; (D D
10、)AM =AN AM =AN 课堂练习课堂练习ABCMN第12页/共17页第十三页,共18页。练习练习(linx)3(linx)3如图,如图,ABC ABC CDACDA,AB AB 与与CDCD,BC BC 与与 DA DA 是对应边,则下列结论错误的是(是对应边,则下列结论错误的是( ) (A A) BAC = DCA BAC = DCA ; (B B)AB /DC AB /DC ; (C C) BCA = DCA BCA = DCA ; (D D)BC /DA BC /DA ABCD课堂练习课堂练习第13页/共17页第十四页,共18页。练习练习4 4如图,如图,EFG EFG NMHNMH,F F 和和M M 是对是对 应角应角(1 1)FG FG 与与MH MH 平行吗?为什么?平行吗?为什么?(2 2)判断线段)判断线段EH EH 与与NG NG 的大小关系,并说明的大小关系,并说明(shumng)(shumng)理由理由(1 1)平行)平行(pngxng)(pngxng);(2 2)相等)相等HENGFM课堂练习课堂练习第14页/共17页第十五页,共18页。归纳归纳(gun)小小结结第15页/共17页第十六页,共18页。第16页/共17页第十七页,共18页。NoImage内容(nirng)总结会计学。能够完全重合的两个三角形叫做全等三角形。ABC与DEF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图书批发商库存控制考核试卷
- 私募股权投资高端制造行业投资分析考核试卷
- 智能健身设备创新与市场分析考核试卷
- 2025科技部技术服务合同书范本
- 2025合同债务潜藏风险
- 2025年如何评估合同违约的财务影响
- 《2025聘请技术人才合同协议书》
- 2025电子产品购销合同范本模板
- 学校食堂食品安全0428
- 苏教版九年级语文(上)教案
- 共享菜园协议书5篇
- 人教版小学数学知识点总结大全
- 毕业设计(论文)-基于SolidWorks的厨余垃圾处理器设计
- 北师大版小学数学家长会发言稿范文
- GMP取样管理课件
- 安徽省普通高中2024学年学业水平合格性测试英语试题(原卷版)
- 《中国古代物理学》课件
- 《阿西莫夫短文两篇》-课件
- 培训机构教务管理岗位职责
- 各行业消防安全培训课件
- 书店承包经营合同2024版
评论
0/150
提交评论