平面向量基础知识及练习_第1页
平面向量基础知识及练习_第2页
平面向量基础知识及练习_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、平面向量基础知识一向量有关概念:1向量的概念:既有大小又有方向的量,注意向量和数量的区别。2零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;3单位向量:长度为一个单位长度的向量叫做单位向量(及共线的单位向量是);4相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:,规定零向量和任何向量平行。提醒:相等向量一定是共线向量,但共线向量不一定相等;两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;平行向量无传递性!(因为有);三点共线共线;6相反向量:长度相等方向相反的向量叫

2、做相反向量。的相反向量是。二向量的表示方法:1几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2符号表示法:用一个小写的英文字母来表示,如,等;3坐标表示法:在平面内建立直角坐标系,以及轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为,称为向量的坐标,叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标及向量的终点坐标相同。三平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1e2。如:若,则_四实数及向量的积:实数及向量的积是一个向量,记作,它的长度和方向规定如下:当>0时,的方向

3、及的方向相同,当<0时,的方向及的方向相反,当0时,注意:0。五平面向量的数量积:1两个向量的夹角:对于非零向量,作,称为向量,的夹角,当0时,同向,当时,反向,当时,垂直。2平面向量的数量积:如果两个非零向量,它们的夹角为,我们把数量叫做及的数量积(或内积或点积),记作:,即。规定:零向量及任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。如:ABC中,则_3在上的投影为,它是一个实数,但不一定大于0。如:已知,且,则向量在向量上的投影为_4的几何意义:数量积等于的模及在上的投影的积。5向量数量积的性质:设两个非零向量,其夹角为,则:;当,同向时,特别地,;当及反向时,;非零

4、向量,夹角的计算公式:;。六向量的运算:1几何运算:向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,那么向量叫做及的和,即;向量的减法:用“三角形法则”:设,由减向量的终点指向被减向量的终点。注意:此处减向量及被减向量的起点相同。如化简:_;_;_2坐标运算:设,则:向量的加减法运算:,。如:已知,则实数及向量的积:。若,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如:设,且,则C、D的坐标分别是_平面向量数量积:。向量的模:。七向量的运算律:1交换律:,;2结合律:,;3分配律:,。八向量

5、平行(共线)的充要条件:0。如:设,则k_时,A,B,C共线九向量垂直的充要条件:.平面向量单元练习1设a是非零向量,是非零实数,下列结论中正确的是() Aa及a的方向相反 B|-a|=|·aCa及2a的方向相同 D|-a|a| 2、下面给出的关系式中正确的个数是()ABCDA. 0 B. 1 C. 2 D. 33、如图,在平行四边形ABCD中,下列结论中错误的是()A.B.C.D.4、若,, 则()A(1,1) B(1,1) C(3,7) D(-3,-7)5、已知向量,若向量满足,则( )A B C D6、是的边上的中点,则向量()A.B. C. D. 7、设,且,则锐角为()A

6、BCD8、已知,其中。若,则tanx的值等于()A1 B-1 C D9、一质点受到平面上的三个力(单位:牛顿)的作用而处于平衡状态已知,成角,且,的大小分别为2和4,则的大小为()A. 6B. 2 C. D. 10、已知O,N,P在所在平面内,且,且,则点O,N,P依次是的 () A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心11、若向量,满足且及的夹角为,则12、已知,则及的夹角为13、已向量若向量,则实数的值是14、设向量及的夹角为,则15、若有以下命题: 两个相等向量的模相等; 若和都是单位向量,则; 相等的两个向量一定是共线向量;,则; 零向量是唯一没有方向的向量; 两个非零向量的和可以是零。其中正确的命题序号是 。16、 已知,且及夹角为120°,求; ; 当k为何值时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论