版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考数学试题分类汇编极坐标与参数方程常规法:1、参数方程和普通方程的互化;2、极坐标方程和直角坐标方程的互化;关键要掌握好互化公式,1. 已知圆C的极坐标方程为,求圆C的半径.(2011北京)在极坐标系中,圆=-2sin的圆心的极坐标是( )A B C (1,0) D(1,)(2013年高考广东卷(文)已知曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立直角坐标系,则曲线的参数方程为_.2014·新课标全国卷 在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ,.(1)求C的参数方程;2.(1)(2016年北京高考)在极坐标系中
2、,直线与圆交于A,B两点,则_.【2015高考湖北,理16】在直角坐标系中,以O为极点,轴的正半轴为极轴建立极坐标系. 已知直线的极坐标方程为,曲线的参数方程为 ( 为参数) ,与C相交于两点,则 .(2011安徽)在极坐标系中,点的圆心的距离为( )(A)2 (B) (C) (D)(2)【2015高考北京,理11】在极坐标系中,点到直线的距离为【2015高考广东,理14】(坐标系与参数方程选做题)已知直线的极坐标方程为,点的极坐标为 ,则点到直线的距离为 .【2015高考福建,理21】在平面直角坐标系中,圆C的参数方程为.在极坐标系(与平面直角坐标系取相同的长度单位,且以原点O为极点,以轴非
3、负半轴为极轴)中,直线l的方程为()求圆C的普通方程及直线l的直角坐标方程;()设圆心C到直线l的距离等于2,求m的值(3)【2015高考重庆,理15】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为_.(2016年全国I高考)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=4cos .(I)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(II)直线C3的极坐标方程为=0,其中0满足tan 0=2,若曲线C1与C2的公共点都在
4、C3上,求a.(4).(2016年全国II高考)在直角坐标系中,圆的方程为()以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;()直线的参数方程是(为参数), 与交于两点,求的斜率几何意义:1、(2016江苏)在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数),椭圆C的参数方程为 (为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.(2法)2、已知直线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1) 将曲线C的极坐标方程化为直角坐标方程;(2) 设点的直角坐标为,直线与曲线C 的交点为,求的值.极坐标: 1.已知直线l经
5、过点P(1,1),倾斜角,(1)写出直线l的参数方程。(2)设l与圆相交与两点A、B,求点P到A、B两点的距离之积。2.(新课标高考2011理科数学)(本题满分10分)选修4-4坐标系与参数方程在直角坐标系中,曲线的参数方程为,(为参数)M是曲线上的动点,点P满足,(1)求点P的轨迹方程;(2) 在以D为极点,X轴的正半轴为极轴的极坐标系中,射线与曲线,交于不同于原点的点A,B求3、【2015高考新课标2,理23】在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线().求与交点的直角坐标;().若与相交于点,与相交于点,求的最大值4.以直角坐标系的原点为
6、极点,轴的正半轴为极轴建立极坐标系。已知点的极坐标为,直线过点,且倾斜角为,方程所对应的切线经过伸缩变换后的图形为曲线()求直线的参数方程和曲线的直角坐标系方程()直线与曲线相交于两点,求的值。5、【2015高考新课标1,理23】在直角坐标系中,直线:=2,圆:,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.()求,的极坐标方程;()若直线的极坐标方程为,设与的交点为, ,求的面积. 参数法求最值:转化为三角函数的最大值问题处理常规法1、.【2015高考安徽,理12】在极坐标中,圆上的点到直线距离的最大值是 .2.在极坐标系中,圆上的点到直线的距离的最小值是 .3.在直角坐标平面内,以坐标
7、原点为极点,轴的非负半轴为极轴建立极坐标系已知点的极坐标为,曲线的参数方程为(为参数)(1)求直线的直角坐标方程;(2)求点到曲线上的点的距离的最小值4、【2015高考陕西,理23】在直角坐标系中,直线的参数方程为(为参数)以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为(I)写出的直角坐标方程;(II)为直线上一动点,当到圆心的距离最小时,求的直角坐标三角函数法:1.已知x、y满足,求的最值。2.求椭圆。 3.(2011福建)在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为。(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为
8、极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值极坐标:(2016年全国III高考)在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为 .(I)写出的普通方程和的直角坐标方程;(II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.巩固练习:1.(2013年高考湖南(文)在平面直角坐标系xOy中,若直线(s为参数)和直线(t为参数)平行,则常数a的值为_2.(2013年高考陕西卷(文) 圆锥曲线 (t为参数)的焦点坐标是_ .3. 2014·广
9、东卷 (坐标系与参数方程选做题)在极坐标系中,曲线C1与C2的方程分别为2cos2sin 与cos 1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为_4. 2014·湖南卷 在平面直角坐标系中,曲线C:(t为参数)的普通方程为_5.2014·江苏卷 在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y24x相交于A,B两点,求线段AB的长6.2014·辽宁卷 将圆x2y21上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C的参数方程;(2)设直线l:2xy20与
10、C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程7 2014·陕西卷 C.(坐标系与参数方程选做题)在极坐标系中,点到直线 sin1的距离是_82014·全国新课标卷 已知曲线C:1,直线l:(t为参数)(1)写出曲线C的参数方程、直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值9(2013年高考课标卷(文) 已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.()把的参数方程化为极坐标
11、方程;()求与交点的极坐标().0(2013年高考课标卷(文)已知动点都在曲线为参数上,对应参数分别为与,为的中点.()求的轨迹的参数方程;()将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.11.(江苏卷高考题)在平面直角坐标系中,求过椭圆(为参数)的右焦点,且与直线(为参数)平行的直线的普通方程12.(江西卷高考题)若曲线的极坐标方程为,以极点为原点,极轴为x轴正半轴建立直角坐标系,则改曲线的直角坐标方程为 .13.(安徽卷)在极坐标系中,点 到圆 的圆心的距离为( )(A)2 (B) (C) (D) 14.(2011年高考广东卷文科14)(坐标系与参数方程选做题)已知两曲线参数方程分别为(0q 和(tR),它们的交点坐标为15.在符合互化条件的直角坐标系和极坐标系中,直线l:与曲线C:相交,则k的取值范围
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保护地球建议书15篇
- 中秋节国旗下讲话稿(11篇)
- 人性的弱点读后感(15篇)
- 仲夏夜之梦的读后感范文
- 中学秋季田径运动会开幕词
- 英语代词课件教学课件
- 探究新课改下高中数学有效教学的几点策略
- 影像科危急值报告制度
- 影响心理挫折承受能力的因素
- 联考协作体八年级上学期语文12月月考试卷
- 湖北省武汉市洪山区武珞路小学2023-2024学年四年级上学期期中测试数学试题
- 慢病防控知识培训
- 中小学教师违反职业道德行为处理办法
- 关键岗位廉洁从业培训课件
- 麦肯锡商业计划书
- 农业旅游商业计划书
- 《神话原型批评》课件
- 教师专业发展及教师专业发展阶段
- 儿童危重症患者的护理
- LED灯具光学基础知识
- 2024抖音运营计划书
评论
0/150
提交评论