下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、上 海 交 通 大 学 2012 级硕士学位论文开题报告登记表学号姓 名导 师李建勋学科控制科学与工程学院(系、所)电子信息与电气工程学院学位论文题目 稳健对地目标跟踪方法研究研究课题来源国家自然科学基金、航天创新基金、中航613横向项目课题的意义以及研究的主要内容 运动目标跟踪是视觉图像处理中的一个非常热门的话题,在多个领域有着广泛的应用。运动目标跟踪的应用领域和环境主要有:对大型公共场所进行智能化视频监控、基于视频的人机交互、交通流量监测、医疗诊断等。本文从计算机视觉角度研究对地目标跟踪方法。由于视觉跟踪系统能在比较复杂的背景下,提取与分离市场内的目标、确定目标位置、估计目标运动趋势、实现
2、对目标的实时跟踪,且具有跟踪精度高、跟踪状态平稳、抗干扰能力强、分辨率高和成本低等特点,在军事上很受重视。在民用领域,对地目标跟踪也有着广泛的应用:对大型公共场所进行智能化视频监控。例如在机场、商场、地铁站等场所进行智能化监控,其主要目的都是为了 保障公众财产和信息安全。在人群监测、交通管理上实现智能化有非比寻常的意义。以以上应用为背景,本文的对地目标跟踪技术包含以下几个主要技术模块:单目标跟踪技术、多目标跟踪技术、密集目标跟踪技术。分出这几个模块是为了应对不同的应用场景,或是在同一场景需要各模块的协同合作。例如地铁站的人群流量具有明显时段特征,早晚上下班高峰人流极大,而其他时段人流量明显减少
3、,这就需要对不同时段采用不同的跟踪方法以达到最好的效果。在上下班高峰期,采用密集目标跟踪技术,而在其他时段,采用多目标跟踪技术,而在有特殊需要的时候,例如跟踪特定犯罪嫌疑人时,可采用单目标跟踪技术。本文研究的主要内容具体有:粒子滤波基本方法研究,这是单目标跟踪方法的框架。在图像跟踪应用中,目标状态的后验概率分布往往是非线性非高斯多模态的,粒子滤波方法对于系统模型没有特殊要求,且能够保持状态的多模态分布,在跟踪领域得到了很大的发展。但常规粒子滤波跟踪算法存在计算量大、采样效率低等问题。粒子群最优化思想研究,改进常规粒子滤波采样效率低的问题,提高采样效率。针对常规粒子滤波跟踪算法存在计算量大、采样
4、效率低等问题,引入粒子群优化思想对目标状态后验分布进行最优搜索,找到后验分布的高似然区,并依据此高似然区来进行重采样。变结构多模型的设计,以更好的表征目标的运动模型。几乎所有的方法对目标的运动状态都假定为平滑的,或者将运动限制在恒速或恒加速运动状态。而实际情况并非如此,例如机动目标的运动状态就很难用单一模型来表征。本文引入变结构多模型方法为目标建立变结构多运动模型。变结构多模型方法能够很好的表征目标的运动模型却又不增加过多的计算量,因此相比单一运动模型能够更好的估计目标的运动。 将先验信息模型引入目标跟踪系统,以得到更精确的跟踪效果。包括在某些场景下,先验信息是可知的,这些信息可用来指导粒子先
5、验分布以获得更精确的后验分布,而地理位置信息模型则是最常用也是最易获取的信息。地理位置模型包含了跟踪场景里道路分布、建筑分布等信息,对目标的运动起到很好的约束作用,能够提高目标跟踪的精确度。结合在线学习与粒子滤波,以稳健的跟踪目标。针对粒子滤波跟踪丢失目标后难恢复的问题,提出一种基于粒子滤波结合在线学习的稳健跟踪方法,使用粒子滤波有效的跟踪结果作为正训练样本不断更新样本库,以跟踪被遮挡和消失后再出现的目标。 JPDA方法及MHT方法研究,以解决多目标之间可能产生的“错标识”问题。多目标跟踪的主要问题在于处理多目标联合状态估计,又由于多数多目标跟踪情况均是非线性非高斯的多维的状态估计问题,在这种
6、情况下,数据关联算法至关重要。所谓数据关联就是将未标记的目标观测与对应目标的状态进行关联。比较成熟的数据关联算法有JPDA方法及MHT方法。然而两者的计算复杂度过大,特别是在视觉跟踪本身的大数据量情况下难以实际应用。本文拟通过挖掘多目标间约束模型来简化JPDA或MHT的计算以使其能够实际应用。 密集目标的运动估计。在一幅幅复杂的密集目标图像中,如果依靠每个目标的个体信息来估计总体的运动,则必须要分离出每个个体的运动,然而这在密度大的情况下是不现实的,特别是当个体之间相互遮挡时这就变得更加困难。本文拟从总体运动趋势入手,不借助于单独个体的信息,而是通过统计视频中宏块的运动矢量来进行总体运动估计。
7、 对本文提出的单目标跟踪算法、多目标算法、密集目标跟踪算法分别从跟踪准确性、跟踪成功率等各方面对各算法的有效性、稳健性进行评估。课题的工作方案以实际应用为背景,为解决对地目标的跟踪监控问题,本文的工作方案为:1、 研究单目标跟踪算法,以满足特殊情况下需要,例如跟踪特定嫌疑人等。本文拟在粒子滤波框架下,用粒子群优 化思想提高采样效率,用变结构多模型来对目标复杂的运动建模,结合在线学习来克服粒子滤波跟踪丢失目标后难恢复的问题。2、 研究多目标跟踪算法,在目标密度较小的情况下进行多目标跟踪。本文拟在MHT框架下研究出能够实际应用于视觉跟踪系统的简易多目标跟踪方法。3、 研究密集型目标群跟踪算法,在目
8、标密度较大情况下进行密集型目标群跟踪。抛弃借助单独个体的运动信息来进行总体运动估计的方法,通过统计视频中宏块的运动矢量进行总体运动估计。4、 实现对地目标跟踪软件系统。注:内容填不下时可自行加页。课题 准研 备究 如有 何无 解困 决难1、 单目标的跟踪方法近年来各种跟踪方法层出不穷,主流算法主要有粒子滤波方法、mean-shift方法、tracking-by-detection等方法。但几乎所有的方法对目标的运动状态都假定为平滑的,或者将运动限制在恒速或恒加速运动状态。而实际情况并非如此,例如机动目标的运动状态就很难用单一模型来表征。本文引入变结构多模型方法,结合粒子滤波方法进行视觉目标跟踪。变结构多模型方法能够很好的表征目标的运动模型,因此相比单一运动模型能够更好的估计目标的运动。2、 多目标的跟踪方法主要在于解决目标发生重叠时的标识问题。常用并比较成熟的方法有JPDA算法和MHT算法。由于JPDA算法的复杂度与目标个数的阶乘成正比,为了降低计算量许多文献讨论了次优JPDA快速算法。而理论的MHT算法同样存在计算复杂度过高难以实际应用的问题,不少文献同样讨论了简约MHT算法。本文拟挖掘多目标之间的运动关联性约束以提高JPDA或MHT算法的效率。计划进度 2014.42014.5 单目标跟踪算法研究及软件实现 2014.62014.7 多目标跟踪算法研究及软件实现 2014.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年低氯离子烧结助剂项目可行性研究报告
- 中国真蜡布市场竞争策略及行业投资潜力预测报告
- 宁波球墨铸铁井盖项目可行性研究报告参考范文
- 2024-2025年中国云通信市场运行态势及行业发展前景预测报告
- 超小型变频调速器行业行业发展趋势及投资战略研究分析报告
- 2025赠与合同撤销方法
- 中国DIY手工创作行业市场运行态势与投资战略咨询报告
- 年产3000吨塑料粒子项目可行性研究报告申请备案
- 黑胡桃科技木行业行业发展趋势及投资战略研究分析报告
- 中国强力安必仙市场供需格局及投资规划研究报告
- 国有检验检测机构员工激励模式探索
- 采购部年终总结计划PPT模板
- CDI-EM60系列变频调速器使用说明书
- 【汇总】高二政治选择性必修三(统编版) 重点知识点汇总
- 材料表面与界面考试必备
- 骨科重点专科省级市级申报材料
- 焦点CMS用户手册
- 丙酮-水连续精馏塔的设计
- 菜鸟也上手:最最完整的Cool Edit Pro 图文操作手册
- 现金流量表附表的编制方法
- 泵业集团出口泵生产组织流程模板范例
评论
0/150
提交评论