交直流调速实验报告_第1页
交直流调速实验报告_第2页
交直流调速实验报告_第3页
交直流调速实验报告_第4页
交直流调速实验报告_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验报告册专业: 班级: 姓名: 学号: 课程: 电力传动控制系统 实验项目名称: 开环直流调速系统的仿真实验 实验时间:5-135-20 同组人:实验报告评分: 一、预习报告(实验课前了解实验目的,预习实验原理、实验步骤):1、实验目的(简述):1 掌握开环直流调速系统的原理;2 掌握利用simulink编程进行仿真的方法。2、实验原理(简述):直流电动机的转速方程为: (1)从转速方程可以看出,调节电枢供电电压Ua即可实现调速,这种调速方法的优点是既能连续平滑调速,又有较大的调速范围,且机械特性也很硬。开环直流调速系统的电气原理图如图1.1所示。三相晶闸管桥式整流电路经平波电抗器L为直流电

2、动机电枢供电,通过改变触发器移相控制信号Uc,可以调节晶闸管的触发角,从而改变整流电路的输出电压平均值Ud,实现直流电动机的调速。图1.1 开环直流调速系统电气原理图开环直流调速系统数据直流电动机额定参数:UN=220V,IN=136A,nN=1460r/min,四极,Ra=0.21,GD2=22.5N·m2。励磁电压Uf=220V,励磁电流If=1.5A。三相桥式整流器内阻为Rrec=0.5。平波电抗器Ld=20mH。3、实验步骤:1掌握直流电动机调压调速的原理。2分析三相桥式整流电路中触发角与输出直流电压平均值之间的关系。3根据开环直流调速系统电气原理图,编制Simulink实验

3、程序,上机调试,记录结果。4分析实验结果,完成书面实验报告,并完成相应的思考题。二、实验数据(记录相应的表格或图表):1、实验数据表格:1)设置模块参数供电电源电压 电动机参数励磁电阻: 励磁电感在恒定磁场控制是可取“0”。电枢电阻: 电枢电感由下式估算: 电枢绕组和励磁绕组互感: 因为 所以 电动机转动惯量 额定负载转矩 模型参考数见表11表1.2直流电动机开环调速系统模型参数2)设置仿真参数:仿真算法ode15a,仿真时间1.5S,电动机空载启动,启动0.5s后加额定负载TL=171.4N.m2、实验图表:1)直流电动机开环调速系统仿真图如下 图1.32)启动仿真并观察结果:仿真的结果如图

4、1.3所示。其中图1.3.1是整流器输出端的电压波形(局部),图1.3.2是经平波电抗器后电动机电枢两端电压波形,该波形较整流器其输出端的电压波形脉动减少了许多,电压平均值在225V左右,符合设计要求。图1.3.3和图1.3.4是电动机电枢回路电流和转速变化过程。在全电压直接起动情况下,起动电流很大,在0.25s左右起动电流下降为零(空载起动),起动过程结束,这是电动机转速上升到最高值。在起动0.5s后加额定电压负载,电动机的转速下降,电流增加。图1.3.5是电动机的转矩变化曲线,转矩曲线与电流曲线成比例。图1.3.6给出了工作过程中电动机的转矩转速特性曲线。通过仿真反应了开环晶闸管直流电动机

5、系统的空载起动和加载时的工作情况。 1.3.1 1-3b1.3.2 1.3.3 1.3.4 1.3.5 1.3.6三、实验思考(完成相应的实验思考题,提出实验的改进方法):1、三相桥式整流电路中触发角与输出直流电压平均值Ud之间的关系: 2、开环直流调速系统转速n与转矩Te之间的关系: 电动机在额定磁通下的转矩系数: 理想空载转速,与电压系数成正比: 3、假设开环直流调速系统允许的最低转速为500r/min,根据所给电动机参数计算开环直流调速系统的静差率和调速范围D。 解:电动机的电动势系数: =0.1311 (v.min/r) 所以: (r/min) 静差率 *100%=30% 调速范围:

6、=2.87实验项目名称: 转速闭环控制的直流调速系统仿真实验 实验时间:5-135-20 同组人:实验报告评分: 一、预习报告(实验课前了解实验目的,预习实验原理、实验步骤):1、实验目的(简述):1 掌握转速闭环控制的直流调速系统原理;2 掌握利用simulink编程进行仿真的方法。2、实验原理(简述):1 直流电动机的调压调速原理从直流电动机的转速方程可以看出,调节电枢供电电压Ua即可实现调速。2 晶闸管装置整流原理三相晶闸管桥式整流电路经平波电抗器L为直流电动机电枢供电,通过改变触发器移相控制信号Uc,可以调节晶闸管的触发角,从而改变整流电路的输出电压平均值Ud,实现直流电动机的调速。3

7、 负反馈控制原理带转速负反馈的直流调速系统稳态结构图如图2.1所示。系统由转速比较环节、偏差电压方大环节、电力电子变换器和测速反馈环节构成。系统在电动机负载增加时,转速下降,转速反馈Un减小,而转速的偏差Un将增加,同时放大器输出控制电压Uc增加,Uc的增加将使得晶闸管的触发角减小,从而增大整流装置的输出电压平均值,为电动机提供更大的电枢电压Ua,从而增大电动机的电枢电流Ia。电动机的电磁转矩为,运动方程为: (1)根据电磁转矩公式和运动方程可知,Ia的增加将使得电磁转矩增大,从而使得转速升高,补偿了负载增加造成的转速降。图2.1 转速反馈闭环控制直流调速系统稳态结构图转速闭环控制直流调速系统

8、数据直流电动机额定参数:UN=220V,IN=136A,nN=1460r/min,四极,Ra=0.21,GD2=22.5N·m2。励磁电压Uf=220V,励磁电流If=1.5A。三相桥式整流器内阻为Rrec=0.5。平波电抗器Ld=10mH。三相电源:相电压130V,频率50Hz,转速反馈系数Kn=0.0067,比例放大系数Kp=20(可按需要调节),饱和限幅为±10。3、实验步骤:1.建立转速闭环控制直流调速系统的数学模型;2.编程进行转速闭环控制直流调速系统的仿真。3.根据转速闭环控制直流调速系统稳态结构图,编制Simulink实验程序,上机调试,记录结果。4.分析实验

9、结果,完成书面实验报告,并完成相应的思考题。二、实验数据(记录相应的表格或图表):1、实验数据表格:1)带转速负反馈的直流调速系统的稳态特性方程为: 图2.2:带转速负反馈的有差直流调速系统组成电动机转速降为: 式中, ;为放大器放大倍数;为晶闸管整流器放大倍数;为电动机电动势常数; 为转速反馈系数;R为电枢回路总电阻。从稳态特性方程可以看到,如果适当增大放大器的放大倍数,电动机的转速降n将减小,电动机将有更硬的机械特性,也就是说,在负载变化时,电动机的转速变换将减小,电动机有更好的保持速度稳定的性能 。如果放大倍数过大,也可能造成系统运行的不稳定。转速负反馈的有差调速系统的仿真模型如图2.4

10、所示。模型在图2.2开环调速系统的基础上增加了转速给定(),转速反馈n-feed,放大器Gain和反映放大器输出限幅的饱和特性模块Saturation,饱和限幅模块的输出时移相触发器的输入,其中转速反馈直接取自电动机的转速输出,没有另加测速发电机,取转速反馈系数 2)在例1的基础上观察带转速负反馈系统在不同放大器放大倍数是对转速变化的影响,模型主要参数见表。 表2.3转速负反馈有静差直流调速系统模型参数2、实验图表:1)试验连线图如图2.4所示: 图2.41)在额定转速=10,=5,10,20时的转速相应曲线Kp=10如图2.5.1所示,随着放大器放大倍数的增加,系统的稳态转速提高,即稳态转速

11、降减小。图2.5.2所示为=10时的电流响应波形,图2.5.2时1/2额定转速(=5)时的转速相应曲线,2.5.3电源电压曲线,2.5.4电动机的转矩变化曲线。 2.5.1(Kp=10) 2.5.2(电流响应曲线) 2.5.3 2.5.4三、实验思考(完成相应的实验思考题,提出实验的改进方法):1、 根据所给数据,计算在同样的负载扰动下,转速闭环控制直流调速系统的转速降和开环直流调速系统转速降之间的关系: 2、 在理想空载转速相同的情况下,计算转速闭环控制直流调速系统与开环直流调速系统静差率之间的关系: 3、 如果电动机的最高转速都是nN,而对最低速静差率的要求相同,计算转速闭环控制直流调速系

12、统与开环直流调速系统调速范围之间的关系: 实验项目名称:转速电流双闭环控制的直流调速系统仿真实验 实验时间:5-135-20同组人:实验报告评分: 一、预习报告(实验课前了解实验目的,预习实验原理、实验步骤):1、实验目的(简述):1 掌握转速电流双闭环控制的直流调速系统原理;2 掌握利用simulink编程进行仿真的方法。2、实验原理(简述):图3.1转速电流双闭环控制的直流调速系统动态结构图转速电流双闭环控制的直流调速系统动态结构图如图3.1所示。为了实现转速和电流两种负反馈分别起作用,在系统中设置两个调节器,分别调节转速和电流,两者之间实行嵌套连接。转速调节器ASR的输出作为电流调节器A

13、CR的输入系统由转速比较环节、偏差电压方大环节、电力电子变换器和测速反馈环节构成。当转速低于给定转速时,转速调节器的输出减小,即电流给定减小,并通过电流环调节使电动机电流下降,电动机将因为电磁转矩减小而减速。在当转速调节器饱和输出达到限幅值时,电流环即以最大电流限制Idm实现电动机的加速,使电动机的起动时间最短。(1)转速电流双闭环控制直流调速系统数据直流电动机额定参数:UN=220V,IN=136A,nN=1460r/min,四极,Ra=0.21,GD2=22.5N·m2。励磁电压Uf=220V,励磁电流If=1.5A。三相桥式整流器内阻为Rrec=0.5。平波电抗器Ld=10mH

14、。三相电源:相电压130V,频率50Hz,转速反馈系数Kn=0.0067,比例放大系数Kp=20(可按需要调节),饱和限幅为±10。电流反馈滤波时间常数Toi=0.002s,转速反馈滤波时间常数Ton=0.01s。转速调节器和电流调节器的饱和值为12V,输出限幅值为10V,额定转速时转速给定U*n=10V。(2)转速电流双闭环控制直流调速系统性能指标电流超调量i%5%,空载起动到额定转速时的转速超调量n%10%,过载倍数=1.5。3、实验步骤:1 建立转速电流双闭环控制直流调速系统的数学模型;2 编程进行转速电流双闭环控制直流调速系统的仿真。3根据转速电流双闭环控制直流调速系统动态结

15、构图,编制Simulink实验程序,上机调试,记录结果。4分析实验结果,完成书面实验报告,并完成相应的思考题。二、实验数据(记录相应的表格或图表):1、实验数据表格:1)调节参数计算和设定:按工程设计方法和选择转速和电流调节参数,ASR和ACR都采用PI调节器。 电流调节其参数计算 电流反馈系数: 电动机转矩时间常数: 电机电磁时间常数: 三相晶闸管整流电路平均失控时间: 电流开环的小时间常数为: 根据电流超调量的要求,电流环按典型I型系统设计,电流调节器选用PI调节器,其传递函数为 其中: 转速调节器参数计算:转速反馈系数: 为加快转速的调节速度,转速环按典型II系统设计,并选中频段宽度h=

16、5,转速调节器传递函数为 其中: 调节的参数见表3.2,调节器的积分环节的限幅值为12调节器输出限幅值为10. 表3.2转速电流闭环控制系统模型主要参数3)设定模型参数:方针算法ode15,仿真时间1.5s。在0.8s是突加1/2额定负载。2、实验图表:1) 直流电动机开环调速系统仿真图如下2) 启动仿真及结果:仿真结果见图3.3可以看到,电动机的启动经历了电流的上升、恒流升速和转速超调后的调节三阶段。与电动机的开环系统相比,电动机启动电流大幅度下降,电流环发挥了调节作用,使最大电流限制在设定的范围以内。在0.8s时突加1/2额定负载后电动机电流上升转速下降,经过0.2s左右时间的调节,转速恢复到给定值。修改调节参数,可以观察在不同参数条件下双闭环系统中电流和转速的响应,修改转速给定,也可以观察电动机在不同转速时的工作情况。3) 仿真结果图如下3.3所示,3.3.1电源电压波形,3.3.2经整流的电压波形,3.3.3和图3.3.4是电动机电枢回路电流和转速变化过程,3.3.5是电动机的转矩变化曲线,转矩曲线与电流曲线成比例。图3.3.6给出了工作过程中电动机的转矩转速特性曲线。 3.3.1 3.3.2(电流响应) 3.3.3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论