




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1会计学TDNN时间延迟神经网络时间延迟神经网络Introduction In this paper, the author presents a novel concept for simultaneous shape estimation and motion analysis based on a TDNN(time-delay neural network) architecture with adaptable spatio-temporal receptive fields.Time delay network structure with adaptable spatio-tem
2、poral receptive fieldstThe input image sequence is of the dimension Sx(1) Sy(1) St(1)Time delay network structure with adaptable spatio-temporal receptive fieldsttBxytrsmnpBranchBranchsijttBxytBxytsijtvsijqkktkTime delay network structure with adaptable spatio-temporal receptive fieldsError function
3、 A k = c (current class c), A1?k = 0 k cExperiments The size of a single image is Sx(1) = 32 by Sy(1) = 16 pixels, one sequence consists of St(1) = 8 such images. There are two shape classes, and five speeds V0 = -4, -2, 0, 2, 4. The training sets consist of 5000 examples, 500 of each class.The netw
4、ork parameters are as follows:And the error rate on the test set is 1.1%.ExperimentsAn Adaptable Time-Delay Neural-Network Algorithm for Image Sequence AnalysisLiu Xiao 2014.8.18IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999Introduction In this paper the author present an algorithm based on a time-delay
5、 neural network with spatio-temporal receptive fields and adaptable time delays(ATDNN) for image sequence analysis. The aim is to classify objects on temporal sequences of grayscale images and to estimate their motion behavior.The ATDNN algorithmThe ATDNN algorithmThe training algorithm As the adapt
6、ation procedure for and is based on a gradient descent method, next step is to define a network output k(, ) for real-valued and , which is achieved by bilinear interpolation. Error functionApplications A. Simple Synthetic Image Sequence The network parameters are Rx = Ry = 7, Rt = 5, NRF = 2, Dx =
7、Dy = 4, Rt = Rh = 2.ApplicationsApplications In the test, The error rate on the test set of 1.1% for above experiments. In this application, the error is 1.2% for training run 1, 1.1% for run 2, and 1.2% for run 3. Applications B. Recognition of Pedestrians In this section the purpose is to examine
8、a rather complex application: the recognition of pedestrians on image sequences based on the characteristic criss-cross motion of their legs. The aim is to distinguish between pedestrian and nonpedestrian patterns.ApplicationsApplications Rx = Ry = 9, Rt = 2, NRF = 2, Rh = 2, Dx = Dy = 5.Application
9、sIntroduction In this paper, the author presents a novel concept for simultaneous shape estimation and motion analysis based on a TDNN(time-delay neural network) architecture with adaptable spatio-temporal receptive fields.tBxytTime delay network structure with adaptable spatio-temporal receptive fieldsError function A k = c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学生学习风格与个性化教学策略
- 教师职业发展与教学质量的提升策略研究
- 教育数字化转型中的技术革新与挑战
- 智慧城市公共服务平台的数据管理与分析
- 教育大数据在教学管理中的创新应用
- 河南开封科技传媒学院《医学伦理学规培》2023-2024学年第一学期期末试卷
- 南京财经大学红山学院《文创产品开发》2023-2024学年第一学期期末试卷
- 云南省普洱市2024-2025学年数学七年级第一学期期末质量跟踪监视模拟试题含解析
- 吐鲁番职业技术学院《色彩基础与配色方法》2023-2024学年第一学期期末试卷
- 2025届成都十八中学九年级化学第一学期期末监测模拟试题含解析
- 《社会网络分析法》课件
- 银行基础知识详解
- 散热器安装施工方案与技术措施
- 在线语言学习行业竞争格局分析
- 第十四讲 建设巩固国防和强大人民军队PPT习概论2023优化版教学课件
- 山东工商学院金融学期末复习题及参考答案
- 国开2023年春《理工英语1》机考网考期末复习资料参考答案
- 信息资源管理(马费成-第三版)复习重点
- 2023年历年真题考试:管理会计(一)历年真题汇编(共139题)
- 正交异性钢桥面板计算
- DB14-T 2611-2022雁门关农牧交错带 肉羊颗粒饲料调制加工技术规程
评论
0/150
提交评论