单位“1”的使用与工程问题(教案)_第1页
单位“1”的使用与工程问题(教案)_第2页
单位“1”的使用与工程问题(教案)_第3页
单位“1”的使用与工程问题(教案)_第4页
单位“1”的使用与工程问题(教案)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 个性化教案 单位“1”的使用与工程问题适用学科数学。适用年级小六教师姓名适用区域课时时长(分钟)120学生姓名知识点1.解答分数应用题,关键要通过分析数量关系,弄清每一道题把什么看作单位“1”,找出解题的数量关系式,再根据分数与除法的关系或一个数乘以分数的意义列式解答。2.工程应用题的工作,一般不给出具体数量。解题时首先要将全部工作看作单位“1”,再求出一个单位时间的工作量占总工作量的几分之几,即工作效率,再根据关系式进行解答。教学目标1.进一步提高分析问题和解决问题的能力。把分数应用题中的不同单位“1”进行转化。2.掌握工程问题的基本数量关系式。教学重点1.解答较复杂的分数应用题时,会把题

2、中不同的单位”1”根据实际问题转化统一的单位“1”,再解答。2.工程问题中,工作效率隐藏在条件中,及循环周期工程问题的解题方法。教学难点工程应用题的工作,一般不给出具体数量。解题时首先要将全部工作看作单位“1”,再求出一个单位时间的工作量占总工作量的几分之几,即工作效率,再根据关系式进行解答。教学过程 一、复习预习今天我们主要讲解分数问题中转化单位”1”的问题,通过学习懂得把不同的数量当做单位”1”,得到的分率可以在一定的条件下转化。另外我们还要学习工程问题中的一些解题方法。 二、知识讲解理论点1:如果甲是乙的,乙是丙的,则甲是丙的。理论点2:工作量=工作效率×工作时间,工作时间=工

3、作量÷工作效率,工作效率=工作量÷工作时间。三、例题精析【例题1】单独干某项工程,甲队需100天完成,乙队需150天完成。甲、乙两队合干50天后,剩下的工程乙队干还需多少天?【解析】以全部工程量为单位1。甲队单独干需100天,甲的工作效【例题2】一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成。如果甲、乙合做,那么多少天可以完成?【答案】天【解析】分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。于是可用“

4、乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)甲、乙合做这一工程,需用的时间为【例题3】小明看一本故事书,第一天看了全书的还少5页,第二天看了全书的还多3页,还剩206页。这本故事书一共有多少页? 【解析】分析:因为第一天、第二天都是与全书比较,所以应以全书的页数为单位【例题4】一本文艺书,小明第一天看来全书的,第二天看了余下的,第三天看了再余下的,还剩下80页。这本书共有多少页? 【解析】本题条件中单位“1”的量在变化,依次是“全书的页数”、“第一天看后余下的页数”、“第二天看后余下的页数”,出现了3个不同的单位“1”。按照常规思路,需

5、要统一单位“1”,转化分率。但在本题中,不统一单位“1”反而更方便。我们先把全书看成“1”,看成“1”,就可以求出第三天看后余下的部分占全书的四、课堂运用【基础】 1. 某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天?【解析】将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。答:甲队干了12天。 2. 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程

6、。问:甲队实际工作了几天?【解析】乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了【巩固】1.蓄水池有甲、乙、丙三个进水管,甲、乙、丙管单独灌满一池水依次需要10,12,15时。上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满。问:甲管在何时被关闭?【解析】上午9时。 2. 甲、乙二人同时从两地出发,相向而行。走完全程甲需60分钟,乙需40分钟。出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。甲再出发后多长时间两人相遇?【解析】这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解

7、答。甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间?由此看出,这道题应该用工程问题的解法来解答。答:甲再出发后15分钟两人相遇。【拔高】1. 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水?【解析】 2. 甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整天做完,并且结束工作的是乙。若按乙、丙、甲的顺序轮流去

8、做,则比计划多用天;若按丙、甲、乙的顺序轮流去做,则比原计划多用天。已知甲单独做完这件工作需要9天,那么甲、乙、丙三人一起做这件工作,要用多少天才能完成?【解析】把甲、乙、丙三人每人做一天称为一轮。在一轮中,无论谁先谁后,完成的总工作量都相同。所以三种顺序前面若干轮完成的工作量及用的天数都相同(见下图虚线左边),相差的就是最后一轮(见下图虚线右边)。由最后一轮完成的工作量相同,得到课堂小结这一节课我们学习了分析单位“1”和工程问题,解决分数应用题的关键是找准”量“与“率”对立关系。对于题中的单位“1”是变化的,我们可通过题中的不变量看作单位“1”,通过把化统一单位”1“然后寻找量与率关系解题。

9、工程问题常常把工作量看作单位” 1”,再根据基本关系解题。课后作业【基础】1、某工程由一、二、三小队合干,需要8天完成;由二、三、四小队合干,需要10天完成;由一、四小队合干,需15天完成。如果按一、二、三、四、一、二、三、四、的顺序,每个小队干一天地轮流干,那么工程由哪个队最后完成?【解析】与例4类似,可求出一、二、三、四小队的工作效率之和是 2. 一项工程,甲、乙两队合作需6天完成,现在乙队先做7天,然后么还要几天才能完成?【解析】题中没有告诉甲、乙两队单独的工作效率,只知道他们合作们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独【巩固】3、单独完成一件工作,甲按规定时

10、间可提前2天完成,乙则要超过规定时间3天才能完成。如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。问:甲、乙二人合做需多少天完成?【解析】乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的,乙需要10+5=15(天)。甲、乙合作需要 4、 放满一个水池的水,若同时打开1,2,3号阀门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成;若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成。问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完

11、成?【解析】同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一【拔高】5、 一项工程,乙单独干要17天完成。如果第一天甲干,第二天乙干,这样交替轮流干,那么恰好用整天数完成;如果第一天乙干,第二天甲干,这样交替轮流干,那么比上次轮流的做法多用半天完工。问:甲单独干需要几天?【解析】解:如果两人轮流做完的天数是偶数,那么不论甲先还是乙先,两种轮流做的方式完成的天数必定相同(见左下图)。甲乙甲乙甲乙甲乙甲乙甲乙 甲现在乙先比甲先要多用半天,所以甲先时,完成的天数一定是奇数,于是得到右上图,其中虚线左边的工作量相同,右边的工作量也相同,说明乙做1天等于甲做半天,所以乙做17天等于甲做8.5天。 6、某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。某日通过该收费站的大客车和小客车数量之比是56,小客车与小轿车之比是411,收取小轿车的通行费比大客车多210元。求这天这三种车辆通过的数量【解析】大客车、小轿车通过的数量都是与小客车相比,如果能将56中的6与411中的4统一成4,6=12,就可以得到大客车小客车小轿车的连比。由56=1012和411=1233,得到大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论