微积分课件曲线的凹凸性与拐点_第1页
微积分课件曲线的凹凸性与拐点_第2页
微积分课件曲线的凹凸性与拐点_第3页
微积分课件曲线的凹凸性与拐点_第4页
微积分课件曲线的凹凸性与拐点_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、问题问题:如何研究曲线的弯曲方向如何研究曲线的弯曲方向?图形上任意弧段位图形上任意弧段位于所张弦的上方于所张弦的上方图形上任意弧段位图形上任意弧段位于所张弦的下方于所张弦的下方xyo)(xfy 1x2x221xx )2(21xxf2)()(21xfxf1x2xxyo)(xfy 221xx )2(21xxf2)()(21xfxfxyoabmn一、曲线凹凸的定义一、曲线凹凸的定义;),()(,2)()()2(,),(,),()(212121内的图形是凹的内的图形是凹的在在那末称那末称恒有恒有两点两点内任意内任意如果对如果对内连续内连续在在设设baxfxfxfxxfxxbabaxf ;),()(,2

2、)()()2(,),(212121内的图形是凸的内的图形是凸的在在那末称那末称恒有恒有内任意两点内任意两点如果对如果对baxfxfxfxxfxxba 定义定义xyo)(xfy xyo)(xfy abababba凹弧:凹弧:曲线上任意一点切线都在曲线弧的下方。曲线上任意一点切线都在曲线弧的下方。凸弧:凸弧: 曲线上任意一点切线都在曲线弧的上方。曲线上任意一点切线都在曲线弧的上方。xyo)(xfy xyo)(xfy abab递增递增)(xf abba0 y递减递减)(xf 0 y定理定理1 1.,)(, 0)()2(;,)(, 0)()1(),(,),(,)(上的图形是凸的上的图形是凸的在在则则上

3、的图形是凹的上的图形是凹的在在则则内内若在若在二阶导数二阶导数内具有内具有在在上连续上连续在在如果如果baxfxfbaxfxfbababaxf 二、曲线凹凸的判定二、曲线凹凸的判定任取两点任取两点)(,2121xxxx 证明:1)分析: 要证要证2)()()2(2121xfxfxxf 即证即证0)2()()2()(212211 xxfxfxxfxf2)()2)()2()(),2,(21121112112111xxfxxxfxxfxfxxx 2)()2)()2()(),2(12221222122212xxfxxxfxxfxfxxx 两式相加为两式相加为:2)()()2()()2()(121221

4、2211xxffxxfxfxxfxf 即证:即证:)( 0)()(2112 ff事实上事实上:),( )()()(2112 fff而而0)( f同理可证明同理可证明2)例例1 1.3的凹凸性的凹凸性判断曲线判断曲线xy 解解,32xy ,6xy 时,时,当当0 x, 0 y为凸的;为凸的;在在曲线曲线0 ,(时,时,当当0 x, 0 y为凹的;为凹的;在在曲线曲线), 0 .)0 , 0(点点是是曲曲线线由由凸凸变变凹凹的的分分界界点点注意到注意到,1 1 定义定义注注1:拐点处的切线必在拐点拐点处的切线必在拐点处穿过曲线处穿过曲线.)()( 点点的的分分界界点点叫叫做做曲曲线线的的拐拐凹凹弧

5、弧与与凸凸弧弧)的的图图形形上上凸凸弧弧与与凹凹弧弧(上上连连续续,我我们们把把在在区区间间设设函函数数xfyixf .)(,200不不同同于于极极值值点点的的表表示示来来表表示示的的,、拐拐点点是是用用坐坐标标(注注xfx三、曲线的拐点及其求法三、曲线的拐点及其求法定理定理 2 2 如果如果)(xf在在),(00 xx内存在二阶导内存在二阶导数数, ,则点则点 )(,00 xfx是拐点的必要条件是是拐点的必要条件是0)(0 xf. .证证2 2 拐点的必要条件拐点的必要条件时时,图图形形是是凹凹弧弧,当当即即对对分分界界点点的的不不妨妨设设它它是是凹凹弧弧与与凸凸弧弧是是拐拐点点000),(

6、.,)(,(xxbaxxfx . 0)( xf递递增增;所所以以)(xf 时时,图图形形是是凸凸弧弧,当当0 xx .)(递递减减所所以以xf .)(的的极极大大值值点点递递减减的的分分界界点点,也也就就是是xf 递递增增与与是是函函数数因因此此点点)(0 xfx 由可导函数取得极值的条件,由可导函数取得极值的条件,;)(,(,)()3(000即即为为拐拐点点点点变变号号两两近近旁旁xfxxfx .)(,(,)(000不是拐点不是拐点点点不变号不变号两近旁两近旁xfxxfx 3 3 拐点的求法拐点的求法方法方法1:);()1(xf 求求0, 0)()2(xxf点点找找出出实实根根和和二二阶阶不

7、不可可导导令令 .)()(,(,)(000的拐点的拐点是连续曲线是连续曲线也可能也可能点点不存在不存在注意:若注意:若xfyxfxxf 例例2 2.14334凹、凸的区间凹、凸的区间的拐点及的拐点及求曲线求曲线 xxy解解),(:d,121223xxy ).32(36 xxy, 0 y令令.32, 021 xx得得x)0 ,( ),32()32, 0(032)(xf )(xf 00凹的凹的凸的凸的凹的凹的拐点拐点拐点拐点)1 , 0()2711,32().,32,32, 0,0 ,(凹凸区间为凹凸区间为.)()(,(,0)(, 0)(,)(00000的拐点的拐点线线是曲是曲那末那末而而且且的邻

8、域内三阶可导的邻域内三阶可导在在设函数设函数xfyxfxxfxfxxf .)2 , 0(cossin的拐点的拐点内内求曲线求曲线 xxy,sincosxxy ,cossinxxy .sincosxxy , 0 y令令.47,4321 xx得得2)43( f, 0 2)47( f, 0 例例3 3解解方法方法2:2:内曲线有拐点为内曲线有拐点为在在2 , 0 ).0 ,47(),0 ,43( .)()(,(,)(000的拐点的拐点是连续曲线是连续曲线也可能也可能点点不存在不存在若若xfyxfxxf 注意注意: :例例4 4.3的拐点的拐点求曲线求曲线xy 解解,0时时当当 x,3132 xy,94

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论