版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五类解析几何问题重在第五类解析几何问题重在“设设”设点、设线设点、设线解析几何试题知识点多、运算量大、能力要求高,综合性强,在高考试题中大都是以压轴题的面貌出现,是考生“未考先怕”的题型,不是怕解题无思路,而是怕解题过程中繁杂的运算.因此,在遵循“设列解”程序化解题的基础上,应突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.解(1)设A(x1,y1),B(x2,y2),设直线AB的方程为yxm,(设线)故线段AB的中点为N(2,2m),|MN|m1|.所以直线AB的方程为xy70.探究提高1.(1)设点:设出A,B两点坐标,并得出x1x2,x1x
2、24.(2)设线:由(1)知直线斜率,再设直线方程为yxm,利用条件可求出m的值.2.破解策略:解析几何的试题常要根据题目特征,恰当地设点、设线,以简化运算.常见的设点方法有减元设点、参数设点、直接设点等,常见的设线方法有圆方程的标准式与一般式、直线方程有ykxb、xmyn及两点式、点斜式等形式、还有曲线系方程、参数方程等.【训练5】 (2018昆明教学质量检测)在直角坐标系xOy中,已知定圆M:(x1)2y236,动圆N过点F(1,0)且与圆M相切,记动圆圆心N的轨迹为曲线C.(1)求曲线C的方程;(2)设A,P是曲线C上两点,点A关于x轴的对称点为B(异于点P),若直线AP,BP分别交x轴于点S,T,证明:|OS|OT|为定值.(1)解因为点F(1,0)在圆M:(x1)2y236内,所以圆N内切于圆M,则|NM|NF|6|FM|,由椭圆定义知,圆心N的轨迹为椭圆,且2a6,c1,则a29,b28,(2)证明设P(x0,y0),A(x1,y1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物流园区配套设施租赁合同范本3篇
- 2025年度动画设计个人聘用合同范本3篇
- 二零二五年荒山资源开发合作合同书范本3篇
- 2025年送餐服务与外卖配送智能化改造合作协议范本3篇
- 2025年度智能车展场地租赁及环保回收利用合同4篇
- 2025年新型屋顶盖瓦施工安全监管协议3篇
- 2025年物业股权抵押担保协议范本3篇
- 2025版城市绿化工程承包合同示范文本4篇
- 2025年度环保项目个人环境监测服务合同样本4篇
- 2025版美容院与美甲美睫培训机构合作协议4篇
- 桥梁监测监控实施方案
- 书籍小兵张嘎课件
- 艺术哲学:美是如何诞生的学习通超星期末考试答案章节答案2024年
- 北京海淀区2025届高三下第一次模拟语文试题含解析
- 量子医学治疗学行业投资机会分析与策略研究报告
- 多重耐药菌病人的管理-(1)课件
- (高清版)TDT 1056-2019 县级国土资源调查生产成本定额
- 环境监测对环境保护的意义
- 2023年数学竞赛AMC8试卷(含答案)
- 神经外科课件:神经外科急重症
- 2023年十天突破公务员面试
评论
0/150
提交评论