版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2016年山东省济南市历城区中考数学一模试卷、选择题(共15小题,每小题3分,满分45分)1. 6+ ( - 3)的值是(A - 2 B. 2C. 3 D. - 18140°D. 40°6280用科学记数法表3. 2015年济南生产总值(GDP达6280亿元,在全国排第 21名,在山东排第3名.示为()62.8 X 102B. 6.28 X 103 C. 0.628 X 104 D . 6.28 X 1024.卜列事件为不可能事件的是(某射击运动员射击一次,命中靶心B.掷一次骰子,向上的一面是5点C.找到一个三角形,其内角和为360°D.经过城市中某一有交通信号灯
2、的路口,遇到红灯5.卜列计算正确的是(a2?a3=a6B. a6 + a3=a2C.4x2-3x2=1 D. (- 2a2)3= - 8a66.图中所示的几何体的左视图是(正面A结果为(10x+3y7.化简(2x-C.)D.A 10x-3y B.C.10x - 9y D. 10x+9y8.商店某天销售了14件衬衫,其领口尺寸统计如表:领口尺寸(单位:38 3940 4142cm)件数则这14件衬衫领口尺寸的众数与中位数分别是(A 39cmK 39cm B. 39cm、39.5cmC. 39cm、40cm D. 40cmK 40cm9.如图,在平面直角坐标系中,ABC的三个顶点的坐标分别为 A(
3、- 1, 0) , B(- 2, 3) , C(- 3,1).将 ABCgy轴翻折得到 A' B' C',则点 B'的坐标为(A (2, 1) B. (2, 3)C. (4, 1)D.(0, 2)的解集表示在数轴上,卜列选项正确的是(10.把不等式组的图象(如图),当C.1D. n1>101101xv 0时,y的取值范围是()C. 2<y<0D. y< - 212.如图,点 。是4ABC的内心,/ A=62° ,则/ BOC=()A 59°B. 31°C. 124D. 121°13.直线y=-二x
4、- 1与反比例函数(x<0)的图象交于点 A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC则k的值为()A - 2 B. - 4C. - 6 D. - 814 .如图, ABC中,/ A=2/B, CDLAB于点 D,已知 AB=10, AD=2 则 AC的长为(B -A 5B. 6 C. 7 D. 815 .如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数yi和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3寸,这两个二次函数的最大值之和等于()D二、
5、填空题(共6小题,每小题3分,满分18分)16 .分解因式:a2- 2a+1=./ 117 .化简:-=.18 .如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小 华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是 .19 .如图,在?ABCM, BD为对角线,E、F分别是AR BD的中点,连接 EF.若EF=3,则CD的长为d B20 .如图,在 ABC中,Z ABC=90 , BD为AC边的中线,过点 C作CEL BD于点E,过点A作BD的平行 线,交CE的延长线于点 F,在AF的延长线上截取 FG=BD连接BG DF.若AB=12, BC
6、=5则四边形 BDFG勺 周长为21 .如图,矩形 ABCM对角线 AC BD相交于点0,过点。作OH AC交AB于E,若BC=4, AOE的面积为6,贝U cos/BOE=BC三、解答题(共7小题,共57分,解答应写出文字说明,证明过程或演算步骤)I £- 2yl22 .解方程组:2肝2y=5(2)解方程:二一二L.s+3 K23. 如图1,在 ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF(2)如图2,在 ABC中,AB=2 AC=1,以AB为直径的圆与 AC相切,与边 BC交于点D,求AD的长.计图解答下列问题:本次调
7、查中,张老师一共调查了(1)(2)将上面的条形统计图补充完整;24. (8分)我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成 四类,A:特别好;B:好;C: 一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统名同学,其中C类女生有一名,D类男生有一名;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.25. (8分)某学校为丰富
8、学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球如图,点A (32)和点M (n n)都在反比例函数 y(x>0)的图象上.(1)求k的值,并求当 m=4时,直线AM的解析式;(2)ABPQ平行四边形;m的值;若不是,请说明理由.(9分)已知:正方形27.(1)当三角板旋转到图1(2)在(1)的条件下,若的位置时,猜想 CE与AF的数量关系,并加以证明;DE AE: CE=1: 巾:3,求/ AED的度数;(3)若BC=4,点M是边AB的中点,连结 DM DM与AC交于点O,当三角板的一边 DF与边DM重合时(如图过点M作MPLx轴,垂足为巳过点A作AB,y轴,垂足为B,直
9、线Ag x轴于点Q,试说明四边形ABCD等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点转.,求CN的长.B图1二0DC28.(9分)如图,二次函数y=ax2+bx+c (a>0)图象的顶点为 D,其图象与x轴的交点A( - 1, 0)(3,0),与y轴负半轴交于点 C.(1)若 ABD为等腰直角三角形,求此时抛物线的解析式;(2)a为何值时 ABE等腰三角形?(3)在(1)的条件下,抛物线与直线x-4交于 M N两点(点 M在点N的左侧),动点 P从M点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点 N,若使点P运动的总路径最短,求点P运动的总路径的
10、长.2016年山东省济南市历城区中考数学一模试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1 . 6+ ( - 3)的值是()A 2 2 B. 2 C. 3 D. - 18【考点】有理数的除法.【分析】根据有理数的除法,即可解答.【解答】 解:6+ (-3) = 2,故选:A.【点评】 本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.2 .如图,/ 1 = /2, Z 3=40° ,贝U/ 4 等于(D. 40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得all b,再根据平行线的性质可得/3=7 5,再根据邻
11、补角互补可得/ 4的度数.【解答】解:.一/ 1=7 2,a / b, / 3=/ 5,. 7 3=40° ,.,-7 5=40° ,.Z 4=180° -40° =140° ,故选:C.【点评】此题主要考查了平行线的性质与判定,关键是掌握同位角相等,两直线平行;两直线平行,同位角 相等.3. 2015年济南生产总值(GDP达6280亿元,在全国排第 21名,在山东排第3名.6280用科学记数法表示为( )A 62.8 X 102 B. 6.28 X 103 C. 0.628 X 104 D . 6.28 X 102【考点】 科学记数法表示较大
12、的数【分析】 科学记数法的表示形式为aX10n的形式,其中1w |a| v 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】 解:6280=6.28 X 103,故选: B【点评】 此题考查科学记数法的表示方法.科学记数法的表示形式为ax 10n的形式,其中1W|a| <10, n为整数,表示时关键要正确确定a 的值以及 n 的值4下列事件为不可能事件的是()A某射击运动员射击一次,命中靶心B.掷一次骰子,向上的一面是5点C.找到一个三角形,其内角和为360
13、176;D.经过城市中某一有交通信号灯的路口,遇到红灯【考点】随机事件【分析】不可能事件是指在一定条件下,一定不发生的事件依据定义即可解答【解答】 解:A、某射击运动员射击一次,命中靶心可能发生,也可能不发生,属于随机事件,不符合题意;R掷一次骰子,向上的一面是5点可能发生,也可能不发生,属于随机事件,不符合题意;G在找到一个三角形,其内角和为360° ,是不可能发生的事件,符合题意;口经过城市中某一有交通信号灯的路口,遇到红灯是随机事件,不符合题意.故选C【点评】 本题主要考查必然事件、不可能事件、随机事件的概念关键是理解不可能事件是指在一定条件下,一定不发生的事件5下列计算正确的
14、是()Aa2?a3=a6B.a6+a3=a2C.4x23x2=1D. (2a2)3= -8a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【分析】先计算出各个选项中式子的正确结果,然后进行对照,即可得到哪个选项是正确的【解答】 解:: a2?a3=a5,故选项A错误; a6+a3=a3,故选项B错误; .14x2 - 3x2=x2,故选项 C 错误; (- 2a2) 3=-8a6,故选项 D 正确;故选D【点评】本题考查同底数哥的乘法、同底数哥的除法、合并同类项、积的乘方,解题的关键是明确它们各自的计算方法.6.图中所示的几何体的左视图是()【考点】简单组合体的三视图
15、.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形, 故选:A.【点评】 本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7 .化简(2x-3y) -3 (4x-2y)结果为()A i 10x-3y B. - 10x+3y C. 10x- 9yD. 10x+9y【考点】整式的加减.【分析】先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:(2x-3y) - 3 (4x-2y)=2x - 3y - 12x+6y=-10x+3y.故选B.【点评】 本题考查了整式的加减、去括号法则两个考点.解决此类题目
16、的关键是熟记去括号法则,熟练运用 合并同类项的法则,这是各地中考的常考点.8 .商店某天销售了 14件衬衫,其领口尺寸统计如表:领口尺寸(单位:38 39 40 41 42cm)件数153 32则这14件衬衫领口尺寸的众数与中位数分别是()A 39cmK 39cm B. 39cm、39.5cmC. 39cm、40cm D. 40cmK 40cm【考点】众数;中位数.【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】 解:同一尺寸最多的是 39cm,共有5件,所以,众数是39cm,14件衬衫按照尺寸从小到大排列,第7, 8件的尺寸是40cm,所以中位数是40cm.故选C【点评】本题
17、考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定 中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有 时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.9.如图,在平面直角坐标系中,ABC的三个顶点的坐标分别为 A(- 1, 0) , B(- 2, 3) , C(- 3,B'的坐标为(1).将 ABCgy轴翻折得到 A' B' C',则点A (2, 1)B. (2, 3)C. (4, 1) D. (0, 2)【考点】翻折变换(折叠问题);坐标与图形性质.【分析】根据关
18、于y轴对称的点的特点找到 B',结合直角坐标系可得出点 B'的坐标.【解答】 解:将 ABC沿y轴翻折得到A' B' C',点B与点B'关于y轴对称,.B' (2,3),故选B.y轴对称的点的特点是解答本题的【点评】 本题考查了翻折变换-折叠问题,坐标与图形的关系,熟记关于 关键.'肾a -110.把不等式组/ 的解集表示在数轴上,下列选项正确的是()A -411 B.1 C.JL* D.cT Q 1-101-101-101【考点】在数轴上表示不等式的解集.【分析】 求得不等式组的解集为-1VXW1,所以B是正确的.【解答】解:由
19、第一个不等式得:x>- 1;由 X+2W3 得:xW1.,不等式组的解集为-1 v xw 1.故选B.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>, '向右画;, w向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一 样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“>",“w”要用实心圆点表示;“V”,要用空心圆点表示.11 .已知一次函数 y=kx+b的图象(如图),当 xv 0时,y的取值范围是(一次函数与【考点】7LC. - 2<y<0 D. y<
20、; - 2次不等式.从图象上得到函数的增减性及与 x轴的交点的横坐标,即能求得当 x<0时,y的取值范围解:一次函数y=kx+b的图象经过点(0, - 2),且函数值y随x的增大而增大,当x<0时,y的取值范围是 yv-2.故选D.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察 图形,注意几个关键点(交点、原点等),做到数形结合.12 .如图,点 O是4ABC的内心,/ A=62° ,则/ BOC=()A 59°B, 31 °C. 124°D. 121°【考点】三角形的内切圆与内心.O
21、BC+【分析】 根据三角形内角和定理求出/ ACB吆ABC求出/ OBC廿OCB= (/ABC吆ACB ,求出/OCB勺度数,根据三角形的内角和定理求出即可.【解答】解:.一/ BAC=62 , ./ABC+/ ACB=180 - 62° =118° ,点O是 ABC的内心,ABC / ACB / OBC吆 OCB= (/ ABC+Z ACBX118°=59° ./ BOC=180 59° =121°故选D.OBC它OCB勺度【点评】本题考查了三角形的内角和定理,三角形的内切圆与内心的应用,关键是求出/ 数,题目比较典型,难度适中.1
22、3.直线y= - -x - 1与反比例函数2y=(XV0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC则k的值为()A 2 2 B. - 4C. - 6 D. - 8【考点】 反比例函数与一次函数的交点问题.【分析】 过A作AD! BC于D,先求出直线=-gx-1与x轴交点B的坐标(-2, 0),则得到C点的横坐标为-2,由于C点在反比例函数yf的图象上,可表示出 C点坐标为(-2, -,利用等腰三角形的性质,由AC=AB AD!BC,得到DC=DB于是D点坐标为(-2, Y),则可得到 A点的纵坐标为-二,利用点A在函数y=,"的图象上,可表示出点
23、 A的坐标为(-4,-与),然后把 A (-4,-与)代入y=-工x-1x442得到关于k的方程,解方程即可求出 k的值.【解答】解:过A作AD! BC于D,如图,对于y=一x - 1,令 y=0,贝U -x 1=0,解得 x= - 2,.B点坐标为(2, 0), -. CB± x 轴, .C点的横坐标为-2, kki对于 y=,令 x=- 2,贝U y=-, x2 .C点坐标为(-2, -1), . AC=AB ADL BC,DC=DB,D点坐标为(-2,-'),A点的纵坐标为-坦而点A在函数y=4的图象上, 把尸背代入T得x=-4,k点A的坐标为(-4,-同),把 A (
24、 - 4,一丁)代入 y= -yx- 1 得-亨=-x(4) - 1,故选B.【点评】 本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两个函数的 解析式.也考查了与 x轴垂直的直线上所有点的横坐标相同以及等腰三角形的性质.14.如图, ABC中,/ A=2/B, CtUAB于点 D,已知 AB=10, AD=2 则 AC的长为(A 5B. 6 C. 7D. 8【考点】等腰三角形的判定与性质.【分析】作/ A的平分线,利用角平分线的性质可知:AF=AD DE=EF利用相似三角形的性质可知:CD=4ED设EF=a,利用相似三角形的性质求出a的值.【解答】解:作/ A的
25、平分线交CD于点E,过点E作EF±AC于点F, :人 BAC=2Z DAE / BAC=2Z B,/ DAE=Z B, . ADa BDC.AD DEbdFd'.CD=4ED AE平分/ DACEDL AB, EF± AC, .AD=AF=2 DE=EF 设 DE=a, .CD=4a, EF=a, .CE=3a,.由勾股定理可求得:CF=2"a, .CED ACADCE_EFCA-AD,3a _a26村2而a=.':, .CF=4,.AC=6,故选(B)【点评】本题考查角平分线的性质,涉及相似三角形的性质与判定,勾股定理等知识,综合程度较高.15.
26、如图,已知点A (4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数yi和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3寸,这两个二次函数的最大值之和等于()【考点】二次函数的最值;等腰三角形的性质;勾股定理;相似三角形的判定与性质.【分析】 过B作BF,OA于F,过D作D吐OA于E,过C作CML OA于M则BF+C娓这两个二次函数的最大 值之和,BF/ DE/ CM求出AE=OE=2 DE=/?,设P (2x, 0),根据二次函数的对称性得出OF=PF=x推出BF和CM相加即可求出答案.-.
27、 BF± OA DEI OA CML OA .BF/ DE/ CM . OD=AD=3 DEI OA .OE=EA=-OA=Z由勾股定理得:DE=',设P (2x, 0),根据二次函数的对称性得出OF=PF=x 1. BF/ DE/ CM.OBMAODEE ACMh ADE'DE=0E,DE = AE ?-,AM=PM=_ (OA op =1(4- 2x) =2-x,啾4等;解得:BF=gx, CM=/W亨x, .BF+CM= 故选A.【点评】 本题考查了二次函数的最值,勾股定理,等腰三角形性质,相似三角形的性质和判定的应用,主要 考查学生运用性质和定理进行推理和计算
28、的能力,题目比较好,但是有一定的难度.二、填空题(共6小题,每小题3分,满分18分)16 .分解因式:a2 - 2a+1= (a- 1) 2 .【考点】因式分解-运用公式法.【分析】观察原式发现,此三项符合差的完全平方公式a2- 2ab+b2= (a-b) 2,即可把原式化为积的形式.【解答】解:a22a+1=a22X 1 x a+12= (a1) 2.故答案为:(a- 1) 2.【点评】本题考查了完全平方公式分解因式,熟练掌握完全平方公式的结构特点是解题的关键.17 .化简:-=x+1 耳 - 1 K- 1【考点】分式的加减法.【分析】本题考查了分式的加减运算.解决本题主要是因式分解,然后化
29、简.,二1 (篡+1)(% 1)【解答】解:原式 上一=-一-二工41 .故答案为x+1.X -1翼- 1【点评】此题的关键是运用平方差公式进行因式分解.分解后再化简,即x2- 1= (x+1) (x- 1)18 .如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是二 .【考点】几何概率.【分析】 先确定黑色区域的面积与总圆面面积的比值,此比值即为所求的概率.【解答】解:观察这个图可知:黑白石子的面积相等,即其概率相等,各占 之.【点评】 本题考查几何概率的求法:首先根据题意将代数关系用面积表示出
30、来,一般用阴影区域表示所求事 件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.19 .如图,在?ABCM, BD为对角线,E、F分别是AR BD的中点,连接 EF.若EF=3,则CD的长为Q C【考点】三角形中位线定理;平行四边形的性质.【分析】根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB【解答】 解:.EF是4ABD的中位线,AB=2EF=6又 AB=CD.CD=6故答案为:6.【点评】 本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键.20 .如图,在 ABC中,Z ABC=90
31、 , BD为AC边的中线,过点 C作CEL BD于点E,过点A作BD的平行线,交CE的延长线于点 F,在AF的延长线上截取 FG=BD连接BG DF.若AB=12, BC=5则四边形 BDFG勺 周长为 26 .【考点】菱形的判定与性质;直角三角形斜边上的中线;勾股定理.【分析】 首先可判断四边形 BGF比平行四边形,再由直角三角形斜边中线等于斜边一半,可得 BD=FD则 可判断四边形BGFD菱形,根据勾股定理求出 AG求出BD,即可得出答案.【解答】解: AG/ BD, BD=FG 四边形BGF虚平行四边形, . CF± BD,.-.CF± AG,又点D是AC中点,.BD
32、=DF=-AC,,四边形BGF虚菱形, .BG=GF=DF=B D在4ABC中,/ABC=90, AB=1Z BC=5 由勾股定理得: AC=13,.BD为 ACB的中线,113BD=-5.BG=GF=DF=bD=-,2故四边形BDFG勺周长=4GF=26故答案为:26.【点评】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断 出四边形BGF虚菱形.21.如图,矩形 ABCM对角线 AG BD相交于点0,过点O作OH AC交AB于E,若BC=4, AOE的面积为6,贝U cos Z BOE= .BC【考点】 矩形的性质;四点共圆.【分析】 如图作OM/ B
33、C交AB于M,连接EC,先利用四点共圆证明/ BOEW ECB再根据 AOE面积求出AE,可以证明 AE=EC由cos/BOE=cosZ ECB整即可解决问题.EC【解答】 解:如图作OM/ BC交AB于M连接EC四边形ABC虚矩形,./ABC=90 , AO=OC .EOL AC,EA=EC / EBC+/ EOC=180 , E、B C O四点共圆,/ BOE=Z ECB . OM/ BC, AO=OC.AM=BM OM=-BC=2> / AMO=ABC=90 ,Saaoe=6,?AE?OM=62.AE=EC=6BC 4 2cos / BOE=cosZ ECB= = = EC昭3故答
34、案为【点评】本题考查矩形的性质、四点共圆的判定和性质、三角形面积公式等知识,解题的关键是利用四点共 圆证明/ BOEW ECB学会转化的思想,属于中考常考题型.三、解答题(共7小题,共57分,解答应写出文字说明,证明过程或演算步骤)22. (1)解方程组:(2)解方程:【考点】 解分式方程;解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;x的值,经检验即可得到分式方程的解.(2)分式方程去分母转化为整式方程,求出整式方程的解得到【解答】解:(1)+得:3x=6,即x=2,把x=2代入得:y=亍,则方程组的解为1;屋(2)去分母得:2x=x+3,解得:x=3, 经检验x=3是分式
35、方程的解.【点评】此题考查了解分式方程,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.23. (1)如图1,在ABC中,AD是中线,分别过点B C作AD及其延长线的垂线BECF,垂足分别为点E F.求证:BE=CF(2)如图2,在 ABC中,AB=2 AC=1,以AB为直径的圆与 AC相切,与边 BC交于点D,求AD的长.【考点】切线的性质;全等三角形的判定与性质.【分析】(1)求出 BE况CFD根据全等三角形的性质得出即可;(2)求出 CAB是直角三角形和求出 ADL BC,根据三角形面积公式求出即可.【解答】(1)证明:二分别过点BC作AD及其延长线的垂线BE、CF,垂足分别为点E
36、、F,E=/ CFD=90 ,.AD是中线, BD=CD在 BEDA CFD中,rZBDE=ZCDFx BD=CE .BED ACFD (AAS ,.BE=CF(2)解:: AC是圆的切线,/ BAC=90 ,在RtABC中,由勾股定理得:BC=jM + 12m北,.AB为圆的直径,./ADB=90 ,即 AD± BC,由三角形面积公式得: BC X AD=-ACX BC,2诉解得:AD-42- .BED【点评】 本题考查了圆周角定理,勾股定理,全等三角形的性质和判定,切线的性质的应用,能求出叁' CFD和 ABC是直角三角形是解此题的关键.24.我县实施新课程改革后,学生的
37、自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自 主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A特别好;B:好;C: 一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了20名同学,其中C类女生有 2名,D类男生有 1名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】 条形统计图;扇形统计图;列表法与
38、树状图法.【分析】(1)由扇形统计图可知,特别好的占总数的15%人数有条形图可知 3人,所以调查的样本容量是:3+15%即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被调查的 A类和D类学生男女生人数列表即可得出答案.【解答】 解:(1) 3+ 15%=2Q20X 25%=5.女生:5- 3=2,1- 25%- 50%- 15%=10%20X 10%=2 男生:2- 1=1 ,故答案为:20, 2, 1;(3)根据张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将 A类与D类学生分为以下几种情况:男A 女A1 女A2男D
39、 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D女A2女D共有6种结果,每种结果出现可能性相等,两位同学恰好是一位男同学和一位女同学的概率为:p (一男一女)二VO 2【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2016?历城区一(x>0)的图象上.25.某学校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(模)如图,点 A (3, 2)和点M ( n n)都在反比例函数 yq(1)求k的值,并求当 m=4时,直线AM的解析式;(2)过点M作MPLx轴,垂足为巳过点A作AB,y轴,垂足为B,直线Ag x轴于点Q,试说明四边形ABP址平行四边形;m的值;若不是,请说明理由.【分析】(1)把A坐标代入反比例解析式求出 k的值,确定出反比例解析式,把m=4代入反比例解析式求出n的值,确定出 M坐标,设直线 AM解析式为y=kx+b ,把A与M代入求出k与b的值,即可确定出直线 AM解析式;(2)根据题意表示出直线 BP与AM解析式,得出两直线斜率相等,进而确定出AM与BP平行,再由AB与PQ平行,利用两对对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《工程伦理》课程教学大纲
- 2024年仿牌运输代理合同范本
- 2024年代装修出售房屋合同范本
- 2024年代缴报名费合同范本
- 江苏省南通市通州区2024-2025学年八年级上学期期中语文试卷(含答案解析)
- 双十一商场活动策划方案
- 《六韬·豹韬》原文及译文
- 医疗细胞公司介绍
- 【数学】指对幂函数的综合四维限时练-2024-2025学年高一上学期数学人教A版(2019)必修第一册
- 分子生物学课件
- 2024年医疗器械经营质量管理规范培训课件
- 22G101三维彩色立体图集
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- 化工厂安全消防标志的制定
- 高低加投停及事故处理
- CKD 电子式压力开关PPG-C使用说明书
- 县农村土地确权信息纠错工作实施方案
- 关于统一使用公司手机号码的通知
- 标准吞咽功能评价量表(SSA)2页
- 用友华表伙伴商务手册.
- 心理安全网格化监管实施方案
评论
0/150
提交评论