挡土墙的土压力计算朗肯库仑PPT课件_第1页
挡土墙的土压力计算朗肯库仑PPT课件_第2页
挡土墙的土压力计算朗肯库仑PPT课件_第3页
挡土墙的土压力计算朗肯库仑PPT课件_第4页
挡土墙的土压力计算朗肯库仑PPT课件_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、挡土墙的几种类型(a)支撑土坡的挡土墙(b)堤岸挡土墙(c)地下室侧墙(d)拱桥桥台P地下室PPP第一节 概述挡土墙:用来侧向支持土体的结构物,统 称为挡土墙。土压力:被支持的土体 作用于挡土墙 上的侧向压力。一、挡土结构物的类型挡土墙的常见类型:(如图)第六章 第2页/共43页第1页/共43页按常用的结构形式分:重力式、悬壁式、扶臂式、锚式挡土墙第六章 第3页/共43页第2页/共43页按刚度及位移方式分:刚性挡土墙、柔性挡土墙 、临时支撑第六章 第4页/共43页第3页/共43页二、墙体位移与土压力类型 墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。太沙基的模型试验结果墙位移与土

2、压力位移墙向前移墙向后移土压力CBPpPPaA0第六章 第5页/共43页第4页/共43页三种土压力的关系:静止土压力对应于图中A点 墙位移为0,墙后土体 处于弹性平衡状态主动土压力对应于图中B点 墙向离开填土的方向位 移,墙后土体处于主动 极限平衡状态被动土压力对应于图中C点 墙向填土的方向位移,墙后土体处于被动极限平衡 状态墙位移与土压力位移墙向前移墙向后移土压力CBPpPPaA0第六章 第6页/共43页第5页/共43页试验表明:(1)挡土墙所受到的土压力类型,首先取决于墙体是否发生位移以及位移方向;(2) 挡土墙所受土压力的大小随位移量而变化,并不是一个常数;(3) 主动和被动土压力是特定

3、条件下的土压力,仅当墙有足够大位移或转动时才能产生。 第六章 第7页/共43页第6页/共43页表6-1 产生主动和被动土压力所需墙的位移量土类 应力状态 墙运动形式 可能需要的位移量砂土主动平移0.0001H绕墙趾转动0.001H绕墙顶转动0.02H被动平移0.05H绕墙趾转动0.1H绕墙顶转动0.05H粘土主动平移0.004H绕墙趾转动0.004H第六章 第8页/共43页第7页/共43页v挡土墙在土压力作用下,不向任何方向发生位移和转动时,墙后土体处于弹性平衡状态,作用在墙背上的土压力称为静止土压力。v当挡土墙沿墙趾向离开填土方向转动或平行移动,且位移达到一定量时,墙后土体达到主动极限平衡状

4、态,填土中开始出现滑动面 ,这时在挡土墙上的土压力称为主动土压力。v 当挡土墙在外力作用下向墙背填土方向转动或平行移动时,土压力逐渐增大,当位移达到一定量时,潜在滑动面上的剪应力等于土的抗剪强度,墙后土体达到被动极限平衡状态,填土内开始出现滑动面 ,这时作用在挡土墙上的土压力增加至最大,称为被动土压力。第六章 第9页/共43页第8页/共43页第二节 静止土压力计算hvhvh=p0zzzH(a)(b) 静止土压力强度(p0)可按半空间直线变形体在土的自重作用下无侧向变形时的水平侧向应力h来计算。 下图表示半无限土体中深度为z处土单元的应力状态:第六章 第10页/共43页第9页/共43页 设想用一

5、挡土墙代替单元体左侧的土体,挡土墙墙背光滑,则墙后土体的应力状态并没有变化,仍处于侧限应力状态。 竖向应力为自重应力: z=z 水平向应力为原来土体内部应力变成土对墙的应力,即为静止土压力强度p0: p0=h=K0z第六章 第11页/共43页第10页/共43页K0HH3P0(c)zpf=c+tg(d)h=p0zzH(b) 静止土压力沿墙高呈三角形分布,作用于墙背面单位长度上的总静止土压力(P0): P0的作用点位于墙底面往上1/3H处,单位kN/m。 (d)图是处在静止土压力状态下的土单元的应力摩尔圆,可以看出,这种应力状态离破坏包线很远,属于弹性平衡应力状态。 2000021HKdzpPH第

6、六章 第12页/共43页第11页/共43页第三节 朗肯土压力理论一、基本原理 朗肯理论的基本假设: 1.墙本身是刚性的,不考虑墙身的变形; 2.墙后填土延伸到无限远处,填土表面水平(=0); 3.墙背垂直光滑(墙与垂向夹角 =0,墙与土的摩擦角=0)。 1857年英国学者朗肯(Rankine)从研究弹性半空间体内的应力状态,根据土的极限平衡理论,得出计算土压力的方法,又称极限应力法。第六章 第13页/共43页第12页/共43页表面水平的均质弹性半空间体的极限平衡状态图第六章 第14页/共43页第13页/共43页 土体内每一竖直面都是对称面,地面下深度z处的M点在自重作用下,垂直截面和水平截面上

7、的剪应力均为零,该点处于弹性平衡状态(静止土压力状态),其大小为:zKzhv031 用1、3作摩尔应力圆,如左图所示。其中 3 ( h)既为静止土压力强度。 hvhvz(a)zpf=c+tg(d)第六章 第15页/共43页第14页/共43页二、主动土压力的计算 用1,3作摩尔应力圆,如图中应力圆I所示。 使挡土墙向左方移动,则右半部分土体有伸张的趋势,此时竖向应力v不变,墙面的法向应力h减小。v 、h仍为大小主应力。当挡土墙的位移使得h减小到土体已达到极限平衡状态时,则h减小到最低限值pa ,即为所求的朗肯主动土压力强度。第六章 第16页/共43页第15页/共43页处。作用点位置在墙高)(总的

8、土压力为:)(主动土压力强度为:对于无粘性土HKHtgHPzKztgpaOaaOa312124521 245 22223第六章 第17页/共43页第16页/共43页处。作用点位置在墙底往上总的土压力为:得临界深度令)()(主动土压力强度为:32221)2)(212Z 02 2452245 020023ZHcKcHKHKcHKZHPKczpKczKtgcztgpaaaaaaaaaOOa对于粘性土:第六章 第18页/共43页第17页/共43页三、被动土压力的计算 同计算主动土压力一样用1、3作摩尔应力圆,如下图。 使挡土墙向右方移动,则右半部分土体有压缩的趋势,墙面的法向应力h增大 。h、 v为大

9、小主应力。当挡土墙的位移使得h增大到使土体达到极限平衡状态时,则h达到最高限值pp ,即为所求的朗肯被动土压力强度。第六章 第19页/共43页第18页/共43页处。作用点位置在墙高)(总的土压力为:)(被动土压力强度为:对于无粘性土HKHtgHPzKztgppOppOp312124521 245 22221第六章 第20页/共43页第19页/共43页心。作用点位置通过梯形形总的土压力为:)()(被动土压力强度为:pppppOOpKcHKHPKczKtgcztgp2212 2452245 221对于粘性土:第六章 第21页/共43页第20页/共43页o+-BA C F B LL D E pa t

10、gf90 -四、实际工程中朗肯理论的应用2cos2coscos2cos2coscoscos2cos2coscos2cos2coscoscoszppzap对于无粘性土:2cos2coscos2cos2coscoscos2212cos2coscos2cos2coscoscos221HpPHaP总土压力为:Pacosz(一)无限斜坡面的土压力计算第六章 第22页/共43页第21页/共43页(二)坦墙土压力计算当墙背倾角45-/2时,滑动土楔不再沿墙背滑动,墙后土体中出现两个滑动面的挡土墙称为坦墙。第六章 第23页/共43页第22页/共43页cr=45-/2第六章 第24页/共43页第23页/共43页

11、第六章 第25页/共43页第24页/共43页(四)填土成层和有地下水时的土压力计算地下水水位以下用浮容重和水下的值212122211aKhh212122211aKhh212122211aKhh11222h1h111aKh111aKh211aKh111aKh211aKh(a)(b)(c)第六章 第26页/共43页第25页/共43页(三)填土表面有均布荷载作用时)(总的土压力为:)(主动土压力强度为:处的垂直应力为:245)21(245)(222OaOaztgqHHPtgqzpqzzpazqHqKaHKaz第六章 第27页/共43页第26页/共43页第四节 库伦土压力理论 库伦土压力理论是从楔体的

12、静力平衡条件得出的。 基本假设:a.滑动破裂面为通过墙踵的平面(平面滑裂面)。b.挡土墙是刚性的(刚体滑动)。 c.滑动楔体 处于极限平衡状态(极限平衡)。第六章 第28页/共43页第27页/共43页角与墙背的法线成土压力夹角为填土的内摩擦角面的法线的方向已知,与PRABCW)3( BC)2() 1 ((一)无粘性土主动土压力一、数解法HACRBWP-CRB180-(+-)PWPR第六章 第29页/共43页第28页/共43页180-(+-)查得。,可由表为库伦主动土压力系数即:值最大值是假定的,求式中2-621coscossinsin1coscoscos210, 22222aaaKKHHPdd

13、PP)(90 sinsinoWP其中按正弦定律可得:根据力的矢量三角形,第六章 第30页/共43页第29页/共43页角。成处,作用方向与水平面作用点在距离墙底主动土压力强度:3HzKdzdPpaaa第六章 第31页/共43页第30页/共43页(二)无粘性土被动土压力角。角,与水平面成,与墙面法线成作用点在距离墙底被动土压力强度:为库伦被动土压力系数321coscossinsin1coscoscos2122222HzKdzdPpKKHHPpppppp第六章 第32页/共43页第31页/共43页二、图解法(一)库尔曼图解法第六章 第33页/共43页第32页/共43页第六章 第34页/共43页第33

14、页/共43页(二)粘性填土的土压力第六章 第35页/共43页第34页/共43页)cos(cos)1 (aqHKaPaPWqWaP总的主动土压力:第六章 第36页/共43页第35页/共43页(三)折线形墙背第六章 第37页/共43页第36页/共43页第五节 若干问题的讨论 相同点:都属于极限状态土压力理论 不同点:朗肯理论从土体中一点的极限平衡状 态出发,由处于极限平衡状态时的大 小主应力关系求解(极限应力法); 库伦理论根据墙背与滑裂面之间的土 楔处于极限平衡,用静力平衡条件求 解(滑动楔体法) 。一、分析方法的异同第六章 第38页/共43页第37页/共43页二、朗肯与库伦理论的适用范围朗肯理

15、论的适用范围:1=0,=0,=0;2 =0, ;3 0, (45- /2)的坦墙;4L型钢筋混凝土挡土墙;5填土为粘性土或无粘性土。第六章 第39页/共43页第38页/共43页库伦理论的适用范围(较朗肯理论广):1当 0;2墙背形状复杂,墙后填土与荷载条件复杂时;3墙背倾角 (45- /2)的陡墙;4数解法用于无粘性土,图解法对于粘性土和 无粘性土均可使用。第六章 第40页/共43页第39页/共43页三、挡土墙设计(一)挡土墙类型的选择(二)挡土墙的计算(1)稳定性验算,包括抗倾覆和抗滑移稳定验算;(2)地基的承载力验算;(3)墙身强度的验算。第六章 第41页/共43页第40页/共43页00 sinP cosP 5 . 1ctgbzzctgzbxPPzPxPGxKKOPGffaaxaazfaxfaztta其中为:抗倾覆安全

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论