![量子力学基础概念题库完整_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/1fae3d96-ef10-4ad4-aba0-7a667f853851/1fae3d96-ef10-4ad4-aba0-7a667f8538511.gif)
![量子力学基础概念题库完整_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/1fae3d96-ef10-4ad4-aba0-7a667f853851/1fae3d96-ef10-4ad4-aba0-7a667f8538512.gif)
![量子力学基础概念题库完整_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/1fae3d96-ef10-4ad4-aba0-7a667f853851/1fae3d96-ef10-4ad4-aba0-7a667f8538513.gif)
![量子力学基础概念题库完整_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/1fae3d96-ef10-4ad4-aba0-7a667f853851/1fae3d96-ef10-4ad4-aba0-7a667f8538514.gif)
![量子力学基础概念题库完整_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-11/23/1fae3d96-ef10-4ad4-aba0-7a667f853851/1fae3d96-ef10-4ad4-aba0-7a667f8538515.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、、概念题:(共20分,每小题4分)1、何为束缚态?2、 当体系处于归一化波函数'(r,t)所描述的状态时,简述在* (r,t)状态中测量力学量F的可能 值及其几率的方法。3、 设粒子在位置表象中处于态w(F,t),采用Dirac符号时,若将屮(r,t)改写为|屮(F,t»有何不 妥?采用Dirac符号时,位置表象中的波函数应如何表示?4、简述定态微扰理论。5、Stern Gerlach实验证实了什么?一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。1. 束缚态:无限远处为零的波函数所描述的状态。能量小于势垒高度,粒子被约束在有限的空间内运动。2. 首先求解力学量
2、F对应算符的本征方程:岸=打札 岸=和打,然后将申(r,t )按F的本征态展开:fij/u2®(F,t ) = E Cn% + JC沖沖扎,则F的可能值为人,扎2,九,九,F = 的几率为6 ,F在扎汇十弘范围内n2的几率为C) d九3. Dirac符号是不涉及任何表象的抽象符号。位置表象中的波函数应表示为严卜2*AAA A4. 求解定态薛定谔方程时,若可以把不显含时间的H分为大、小两部分H=H(0),H,其中(1)h(0)的本征值Eno)和本征函数-:n0)是可以精确求解的,或已有确定的结果H(0),n0) =En0),n0), (2)h 很 小,称为加在h上的微扰,贝冋以利用
3、39;-;n0)和En0)构造出匸和e。5. Stei n- Gerlack实验证明了电子自旋的存在。一、概念题:(共20分,每小题4分)1、一个物理体系存在束缚态的条件是什么?2、两个对易的力学量是否一定同时确定?为什么?3、测不准关系是否与表象有关?4、 在简并定态微扰论中,如H(0)的某一能级En0),对应f个正交归一本征函数i ( i=1,2,,f),为什么一般地i不能直接作为= H?0 H?的零级近似波函数?5、 在自旋态 1 (sz)中,Sx和Sy的测不准关系(:Sx)2(:Sy)2是多少?一、20分,每小题4分,主要考察量子力学基本概念以及基本思想。1、 条件:能量比无穷远处的势
4、小;能级满足的方程至少有一个解。2、 不一定,只有在它们共同的本征态下才能同时确定。3、无关。4、 因为作为零级近似的波函数必须保证H0 -En0 n-H1 -En1有解。'45、。一、概念题:(共20分,每小题4分)1、 在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger方程的解?同一能量对应的各简并态的迭加是否仍为定态 Schrodinger方程的解?2、 两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。3、说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。4、何谓选择定则。5、 能否由Schrodinger方程直接导出自旋?1、不是,是
5、2、不一定,如?? L互不对易,但在丫00态下,?= ? = ? =0。x y zxyz3、 厄米矩阵的定义为矩阵经转置、共轭两步操作之后仍为矩阵本身 ,即Anm = Am n ,可知对角线上的元素必为实数,而关于对角线对称的元素必互相共轭。4、 原子能级之间辐射跃迁所遵从的规则。选择定则表明并非任何两能级之间的辐射跃迁都是可能的,只有遵从选择定则的能级之间的辐射跃迁才是可能的 。5、不能。一、概念题:(共20分,每小题4分)1、叙述量子力学的态迭加原理。2、厄米算符是如何定义的?3、 据a?, ?*=1 , h?=召+召,N? n) = n n),证明:a? n) = n 1。4、非简并定态
6、微扰论的计算公式是什么?写出其适用条件。盘 方土盃a5、 自旋S,问二是否厄米算符?;是否一种角动量算符?21、 如果-:1和2是体系的可能状态,那么,它们的线性叠加* =CT:1訂2 ( C1、C2是复数)也是这个体系的可能 状态。2、 如果对于两任意函数屮和®,算符F满足下列等式(屮MF®di = J(?屮,则称F为厄米算符。3、?,a '-1 即?a -a a -1又 N 二? ?二 l?a? n) = ?为? n) = (?0-1 )? n) = (?1? -? n) = aN n) -? n) =? n) -? n) =?n-1) n) =(n-1ja n
7、)?n:: =c n-1又丁(n l n) = (n n n)=门且(n ? n) =(n ?乜 n) =n| c? n) =|c2 = n取 c = n 得 a n: = yn |n -1 、 E"=En0 Hnnm nm专业word可编辑Hmn'-n-0IHmn适用条件:Ejnzr<15、?是厄米算符,但不是角动量算符。、概念题:(共20分,每小题4分)波函数的量纲是否与表象有关?举例说明。1、动量的本征函数有哪两种归一化方法?予以简述。d知Ge = :- e :x,问能否得到G = ?为什么? dx简述变分法求基态能量及波函数的过程。简单Zeemann效应是否可以
8、证实自旋的存在?1 .有关,例如?在位置表象和动量表象下的本征态分别为%i r P e 和P P P-P。,它们的量纲P0显然不同。2 .坐标表象下动量的本征方程为:p r = Ce ,它有两种归一化方法:归一化为函数:由1V(HP(r卄=6(P-P"鳩出c =r ;箱归一化:假设粒子被限制在一个立方体中,边长为(2兀巧L,取箱中心为坐标原点,要求波函数在箱相对面上对应点有相同的值,然后由! n,:?:;p r;l rd =1得出C-丄L2因为所作用的波函数不是任意的。:写出体系的哈密顿算符;不能,第一步第二步:根据体系的特点(对称性,边界条件和物理直观知识),寻找尝试波函数'
9、; ,初变分参数,它能够调整波函数(猜一个);第三步:计算哈密顿在态中的平均值- 严 *)H (九)屮(Qdi H (')=伴(沪(丸)dt第四步:对厂求极值,即令二0 ,求出Hmin ',则 d丸Hmin (丸),切 ° 屮 )minEo不可以。(共20分,每小题4分)1、不考虑自旋,当粒子在库仑场中运动时,束缚态能级En的简并度是多少?若粒子自旋为s,问 En的简并度又是多少?专业word可编辑、概念题:2、 根据dF = _F -丄F?, H?说明粒子在辏力场中运动时,角动量守恒。dt 盘卷3、 对线性谐振子定态问题,旧量子论与量子力学的结论存在哪些根本区别?4
10、、简述氢原子的一级stark效应。5、写出j+| jm的计算公式。1. 不考虑自旋时,当粒子在库仑场中运动时,束缚态能级可表示为En ,其简并度为n2。若考虑粒子的自旋为s ,则En的简并度为(2s 1)n2。2. 粒子在奏力场中运动时,Hamilt on算符为:I?rU r ,则有:24 r2矽 卸2叶2?-,!?!= F,i?Lo,又因角动量不显含时间,得色=0、角动量守恒。adt3. 旧量子论给出线性谐振子的基态能量为零而量子力学认为其基态有能量,为丄:;另外,量子力学表明,在2旧量子论中粒子出现区域以外也有发现粒子的可能。4. 在氢原子外场作用下,谱线(n=2 > n=1)发生分
11、裂(变成3条)的现象。5. ? j,m. = j j 1 m m 1 方 j,m 1;。一、概念题:(共20分,每小题4分)21、由* I d =1,说明波函数的量纲。2、 F?、G?为厄米算符,问F?,G与iF?,G?是否厄米算符?3、 据召,?*=1, W =召+召,N? n) = n 证明:n= Jn + 1| n + 1)。4、 利用量子力学的含时微扰论,能否直接计算发射系数和吸收系数?5、什么是耦合表象?1. 波函数的量纲由坐标的维数来决定。对一维、二维、三维,的量纲分别为L、L2、 L3,则波函数的量纲依次为L°2、L,、L”2。2. F,G不是厄米算符,iF?,G是厄米
12、算符。因为(i j?,GM)+=i3. 证明:可证明算符a,a 对于能量本征态的作用结果是:?n)=兀(npn1;:a+n)=Y(npn+1)(1)'八为待定系数。上式的共轭方程是:S 旨十二人气n 忙 T (n ? = /(nn+1(2)式(1)和相乘(取内积)并利用已知条件,即得:丸 =(n?+? n) = n v*v =(n|?a n) =n (a4? +1n) = n + 1适当选择态矢量 n)的相因子(e©),总可使人和v为非负实数。因此,n,:'n = . n 1故得证。.专业word可编辑4. 利用量子力学的含时微扰论,可以直接计算出受激发射系数和受激吸
13、收系数;但由于没有考虑到电磁场的量子化(即量子力学中的二次量子化 ),自发跃迁系数不能直接被推导出来,可在量子电动力学 (QED)中计算出。5. 以了表示?与J2之和:了=£+了2 ;算符f,Jz,Jf衣花 a屮n + 严丿n,J2相互对易、有共同本征矢 j1, j2, j,m,j和m表 明J2和Jz的对应本征值依次为 j(j+1户2和m齐。j1, j2, j,m组成正交归一完全系,以它们为基矢的表象 称为耦合表象。、概念题:(共20分,每小题4分)1、 不考虑粒子内部自由度,宇称算符P?是否为线性厄米算符?为什么?2、 写出几率密度与几率流密度所满足的连续性方程。3、 已知:?0?
14、 ? , p?x = ,且? n = nJ , a? n = n 1-: n -1,试推12曲丿i J 2丿出线性谐振子波函数的递推公式。4、写出一级近似下,跃迁几率的计算式。是。 PC1U x,y,z C2V x,y,z L C1 Pu x,y,zC2 Pv x,y,z 且5、何谓无耦合表象?1、I I iu x,y,zPv x,y,z dxdydz : i i iu x,y,zv -x,-y,-z dxdydz-j2CjDC-£3Ou - X,-Y,-Z v X,Y,Z dXdYdZ 令 X =-x, Y =-y, Z z-behcbc-bctcbcI I iu -X,-Y,-Z
15、 v X,Y,Z dXdYd Z:rtCrbCL羊Pu X,Y,Z 5 X,Y,Z dX dYd ZPu x, y,z v 乙y,z dzdydzP是线性厄米算符。)与几率密度-i衣2、几率流密度j =(a 2m方程为:J =0a3、专业word可编辑n 1n11丄j(a+a坤 2丄12、1曲n吐丿nx'na a ?' n2丄,a?- n a? ' n a - a a - n2n n -1 '- n-2 n 仁 n n- n 1 n 2 - n .22.h . 廿 5 2n " ”1n ".2d'.dx1T(a-and2d 2%d)0
16、1 二召1- n '' n-1 -、n 1 n 1 -p/' n a-a a-a ' n专业word可编辑aa - n -aa -aa-n a a nn-1' n-2 - nn - n'- n n 1 n 2 '- n 2|_JLm s.nn-1'* - 2n 1 - n . n 1 n 2= 24、一级近似下,由初态'k跃迁到终态爲的几率为:Wk m= 4mkemktdf 其中,H; W 0mkmH*.,5、a2,?1z,a2,?2z相互对易,有共同的本征态j1 m1 j2 m2)三j1j2,则该本征态对应的表象为无耦合
17、表象。、概念题:(共20分,每小题4分)1、给出线性谐振子定态波函数的递推公式2、,G是否线性算符?3、在什么样的基组中,厄米算符是厄米矩阵?4、何谓选择定则?5、写出了_ jm公式。态波函数的递推公式:n、, 2 "J谐振子定数,A1.dx1i2(<a-an1 n n-1 一 n V n 1 ,其中, n为线性谐振子定态波函2. 不是,因为Gc)=cG式c$w 。3. 在本征值分立的基组中,厄米算符是厄米矩阵。4. 为了使越迁几率不为零,一定对量子数做了某些限止 ,这些限止即为选择定则5. ?_jm = j jjm-1。、概念题:(共20分,每小题4分)1、何为束缚态?2、写
18、出位置表象中?x ,? , ?和?的表示式。3、对于定态问题,试从含时Schrodinger方程推导出定态Schrodinger方程;4、对于氢原子,其偶极跃迁的选择定则对主量子数 n是否存在限制?为什么?5、 在现阶段所学的量子力学中,电子的自旋是作为一个基本假定引入的,还是由其它假定自然推 出的?1. 束缚态:能量小于势垒高度,粒子被约束在有限的空间内运动,它的波函数在无限远处为零。?2. 及=,P=-、,? = x, ?=xi yjzki exi3.当U(r)不显示时间 t ,设 r (r,t ( r )f(t)代入含时薛定谔方程i ':,"二一厂'2?(r,t
19、) U (r)?(r ,t),分离变量得:'2罟=春亍宀()5)()这个等式左边只是t的函数,右边只是r的函数,而t和r是相互独立的变量,所以只有当两边都等于同一常量时,等式才能满足。以E表示这个常量,由等式右边等于E,有:一22'、(r ) U(r )( r E (r )此即为定态薛定谔方程4. 对于氢原子,其偶极跃迁的选择定则对主量子数n没有限制,因为在计算跃迁几率时 ,与主量子数有关的积分o"Rnl(r )Rnl (r)r3dr在n和n取任何整数值时均不恒等于零 。5. 在初等量子力学中,自旋是作为一个基本假定引入的。、概念题:(共20分,每小题4分)1、 假如
20、波函数应满足的方程不是线性方程,波函数是否一定能归一化?2、试写出动量表象中?,?,仗,?的表式3、幺正算符是怎样定义的?4、 我们知道,平面单色波的电场能和磁场能相等,而在用微扰论计算发射系数和吸收系数时,我 们为什么忽略了磁场对电子的作用?5、 对于自旋为3/2的粒子,其自旋本征函数应是几行一列的矩阵?6.7.8.不一定能归一化,因为波函数满足的方程不是线性方程时 ,*在动量表象中:X = i -, ?=i ip, 0x = Px, P=PCPx满足I?= I? J的算符为幺正算符。与C'-:表示的就不- -定是 同一态。9.因为光波中的磁场对电子作用的能量约为电场对电子作用能量的
21、1137,所以忽略了磁场对电子的作用。10.四行一列。、概念题:(共20分,每小题4分)1、写出德布罗意关系式及自由粒子的德布罗意波维线性谐振子基态归一化波函数为-1 2 2a pot x e0,试计算积分aO.X 2 ed x ;03、当体系处于归一化波函数书所描述的状态时,法;4、已知氢原子径向Schrodinger方程无简并用?简述在书态中测量力学量F的可能值及其几率的方,微扰项只与r有关,问非简并定态微扰论能否适5、自旋是否意味着自转?德布罗意关系:P = hn二飞自由粒子的德布罗意波:=Ae : 2 2_e-xdx=1 得:(- : 2 2e"- : 2 2dx =2a2,
22、 F在,d范围首先求解力学量f的本征方程:乍吧=人a f%=m扎,然后将®(r,t)按f的本征态展开: ®(r ,t )=送Cn°n + JC疋人,则F的可能值为入1 ,爲,"n ,九,F =人的几率为Cnn2内的几率为c/ d。可以适用。自旋是一种内禀角动量,并不是自转。、概念题:(共20分,每小题4分)1、光到底是粒子还是波;2、 两个对易的力学量是否一定同时具有确定值 ?在什么情况下才同时具有确定值?3、不考虑自旋,求球谐振子能级En的简并度;4、 我们学过,氢原子的选择定则1 = -1,这是否意味着剧二-3的跃迁绝对不可能发生?5、克莱布希一高豋
23、系数是为解决什么问题提出的?1.光疋粒子和波的统。2.不一定,只有在它们共冋的本征态下才能冋时确定。3.球谐振子能级En =(3、匕 j,(n f ;"“心2,)(n 1) n 2En的简并度为J24. 不一定。偶极近似下的结果才为1 = 1 ,在多极近似下或精确解时 3也可能会实现。5. 克莱布希-高登系数是为了实现无耦合表象和耦合表象之间的变换而提出的。1、在球坐标系下,波函数'匚r/'为什么应是进动角 '的周期函数?2、 设当x v a和y v b时,势能为常数u0,试将此区域内的二维Schrod in ger方程分离变量 (不求解);3、何谓力学量完全
24、集?4、定性说明为什么在氢原子的 Stark效应中,可将HT = e ; r视为微扰项?5、Pauli算符二?是否满足角动量的定义式?2J2、二维定态薛定谔方程:盘2、Cl、 2 勿丿U0 -令 -y, Ex Ey,U。=UX Uy.Zi2 d2Wd X+Ux屮 x = Ex屮 x1、与 _2二在球坐标系下为同一点,根据波函数的单值性,同一点应具有同一值,故球坐标系下波函数r/为进 动角油勺周期函数x!2 J dx2可得-2d2<yAAA2,,它们的共同本征函数记为 <k(k是一组量子数的笼统记,则吐A ,A2,构成体系的一组力学量完全集 .力学量完全集中厄五苛+U"y
25、=E儿3、设有一组彼此独立而又相互对易的厄米算符号).若给定k之后就能够确定体系的一个可能状态 米算符的数目与体系的自由度数相同.,称为氢原子的stark效应.加入外电场后,势场的对称性受到破坏,能级.在一级stark效应中,由于通常情况下,外电场强度比4、氢原子在外电场作用下所产生的谱线分裂现象发生分裂,使简并部分被消除,可用简并情况下的微扰理论来处理起原子内部的电场强度要小得多,故可以把外电场看作微扰.5、 将?=-?代入自旋角动量定义式=得?x? = 2i?,即算符钱不满足角动量定义式.2、概念题:(共20分,每小题4分)1、简述量子力学产生的背景;2、 写出位置表象中直角坐标系下 Lx
26、、Ly、L?z、I?的表示式;3、 Rnri为有心力场中的径向波函数,问.Rnrl Rnrl T dr = Lm是否成立?为什么?04、定态微扰论是否适用于主量子数 n很大的氢原子情况?为什么?5、 有关角动量的定义,我们学过哪两种?哪一种更广泛?自旋角动量是按哪一种定义的?2、?x(20 分)经典物理无法解释近代物理出现的黑体辐射在 Plank. Einstein, Bohr, de Broglie 等的基础上 ,Heisenberge, Schrodinger, 力学,经Dirac, Pauli等人的完善发展形成了当今的量子力学。= y?z z?y =-i 加三+i 卮二,l?y =z?x
27、 x?z = + 三比 创dxcz?z =x?y _y?x = -i/jx±+i1、,光电效应,原子光谱与原子结构等问题 分别提出矩阵力学、o波动3、( ayz卜cz不一定成立,仅当Idxc匚(G 打*1 F1 +zx1x创丿< ex氐丿4、不适用,n很大时,E,0)£可能很小,8-y欣丿j因为角动量的本征态(对应量子数l)是关于角向正交归一的。Hmn硏匚目叮*1不成立,n1 m5、H 不能看作微扰? = ? P, ? ? = i电子在三维势场U r =。对定态简并情形也一样。:iJ,自旋按后者定义S s = ti2e、概念题:(共20分,1、说明:x的量纲;2、说明
28、在定态问题中+ D?x中运动,其中D为常数,求其定态能级及波函数。4 0r每小题4分),定态能量的最小值不可能低于势能的最低值;5、=0专业word可编辑3、简述占有数表象;4、 试说明对易的厄米算符的乘积也是厄米算符;5、何为偶极近似?由.:xdx =1 x量纲为L知,:x的量纲为L-1。在定态问题中,R二卞,_ _ 2 _ _E 订 UU -U -Umin,2卩即定态能量的最小值不可能低于势能的最小值。一维线性谐振子能量本征值方程n二En* n,其中Enn j2'n =NneXp引入产生、消灭算符a =二72n表示即n,则n? n=n n,因 H -l .:2x2 故 # = S
29、S -= N? - ' ,以 Dirac 符号2卩2V 2丿 I 2丿算符N?的本征值为n,以n)为基矢的表象称为占有数表象。4.令 A = A,B?二= A?,则(? = B? A = B?A,若农B?Lo 则用? = BA,有(?二用?二用? =(?,即C?为厄米算符。5. 在量子跃迁问题中,一级近似时忽略光波中磁场对原子的作用能,并假设光波长远大于原子线度,得出跃迁几 2 率k_ermk ,其中er为电子偶极矩,故称此种近似处理方法为偶极近似。、概念题:(共20分,每小题4分)1、量子力学克服了旧量子论的哪些不足 ?2、写出L?z二-的本征值及对应本征函数;i创3、一个物理体系存
30、在束缚态的条件是什么?4、简述态的表象变换的方法;-、;比氢原子稍复杂的体系解释的不好;即使是氢原子,对5、已知总角动量J?=j+J2,试说明£2,了12=0 o 旧量子理论有下列不足:其角动量量子化的假设很生硬 其谱线强度也无能为力。量子力学的优点:量子化是解方程得出的很自然的结果 给出谱线的位置,也可以给出谱线的强度。;可以解释比氢原子更复杂的原子;对于氢原子不仅可以设?z = -i衣厶的本征值为m办,本征函数 厂,2二一个物理体系存在束缚态的条件是:存在能量值,其大小小于无穷远处的势能穷远处为零的边界条件的解 。一个抽象的希尔伯特空间中的矢量可以按照不同的完备基展开,称为不同的
31、表象本征函数组为 订2, I,爲,力学量完全集 B的共同正交归一本征函数组为im e ,其中 m = 0,二 1,二2,.,且对应该能量的方程存在满足无设力学量完全集 A的共同正交归一 二爲,将 n用:n展开 得到基矢的变换规则:二二' ,以Sn 1为矩阵元的矩阵 S为变换矩阵满足 SS =1 o把矢量匸用两组基n展开二' an n = X bn :n ,坐标分量的变换规则为 aSknbn,bk = " (S*)knan ,力学量在不同表象下的矩nnnn阵元之间的变换规则为F)二為為(S)FjASj :,即Fb=SFaS.i ja?2 = J1?22 J?1?2 ?2
32、?1由于 J?和 J?2对易,故?2 =(J? + JU = J?2 + J; +2J? J2 J? ?2 ?2 ?2 J* ?2 ?2 k 2 ?2 ? ?-0 0 2J?1 J?12, J?j- 2E2, J? J、概念题:(共20分,每小题4分)1、旧量子论存在哪些不足?2、 对于旧量子论中氢原子的轨道”,量子力学的解释是什么?3、 两个不对易的力学量一定不能同时确定吗?举例说明;4、简述变分法的思想;5、写出电子在S?z表象下的三个Pauli矩阵。1. 旧量子论即玻尔(Bohr)的量子论(稳恒轨道&定态跃迁&量子化条件)加上索末菲(Sommerfeld)在此基础上的推
33、广,故亦称玻尔理论或玻尔与索末菲的理论由于经典理论在两者的头脑中已根深蒂固,这使得他们把量子力学的研究对象一一微观粒子(电子,原子等)看作经典力学中的质点,进而把经典力学的规律用在微观粒子上这样,就造成了旧量子论存在以下几点不足: 角动量是'的整数倍”这一量子化条件很生硬 只能很好解释氢原子或较好解释只有一个价电子(Li,Na,K等)的光谱结构,而对于稍复杂例如简单程度仅次于氢原子的氦原子,则已无能为力 即使对于氢原子,也只能求其谱线频率,而不能求其强度2. 由于量子力学在描述微观粒子的运动时,认为它没有确定的轨道,而是用波函数绝对值的平方表示粒子在空间各处出现的(相对)几率因此在解释
34、原子中电子的运动时,量子力学可用电子云图形象地表示出电子在空间各处出现的几率基于此,对于旧量子论中氢原子的轨道”,量子力学解释为电子在原子核周围运动的径向几率密度最大处3 .由Lx,?y -i L?z知,算符L?x,?y不对易但在态-00中,由L?z-00得到Lz=0 :?x,L?y,?z在此态中 地位平等,得Lx二L?y =0.即两个不对易的力学量不一定不能同时确定.实际上 在角动量J的任何一个直角坐标分量(Jz)的本征态下,J的另外两个分量(Jx,Jy)的平均值均为0. 参见钱伯初与曾谨言所著量子力学习题精选与剖析(第二版)第165页.4在量子力学的近似方法中,微扰法有一定的适用范围,即当
35、其中的F?(0)部分的本征值与本证函数未知,或H?不是很小 时,微扰法就不再适用变分法不受上述条件的制约,但在求解基态以上近似时则相当麻烦,故只常用来求解基态能级与基态波函数其基本思想是对于某一确定体系,用任意波函数计算出的H?的平均值总是大于体系的基态能量E0,而只有当t恰好是体系,相应的波函数为基态波函数E。.这样,我们可以选取许多-并计算的基态波函数'-0时,H?的平均值才等于基态的能量 出相应H?的平均值,这些平均值中最小的一个最接近于基于此,用变分法求基态能量和基态波函数的步骤为: 取含参量,归一化,且有物理意义的尝试波函数r,', 求平均值H"H'
36、d ,dH 求极小值0 :.0, 得基态能量E° = HU。),基态波函数°: j,r .需要注意的是,在选尝试波函数时,需要许多技巧 一、概念题:(共20分,每小题4分)5.在Sz表象下电子的三个泡利00 11 0(Pauli)矩阵为: 、_|1<00T1、简述波函数的Born统计解释;2、 设'是定态Schrodinge方程的解,说明”也是对应同一本征能级的解,进而说明无简并能级 的波函数一定可以取为实数;3、引入Dirac符号的意义何在?4、定态微扰论的适用范围是什么?5、 简述两个角动量耦合的三角形关系。1. 同人们理解所有基本概念的过程一样,人们对物质粒子波动性的理解也并非一帆风顺:由于深受经典概念的影响,包括波动力学的创始人在内,他们把电子衍射实验中的电子波看成三维空间中连续
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制梁劳务合同范例
- 信贷资产信托合同范本
- 乙醇燃料的成本管理和降本增效
- 不带司机租车合同范本
- 全款买车销售合同范本
- 兼职模特合同范例
- 冷库设备购销合同范本
- 农村承包鱼塘经营合同范例
- 电影制片人聘用合同范本
- 徐州白云区门面出租经营合同范本
- 2025届西藏林芝一中高三第二次诊断性检测英语试卷含解析
- 中国传统文化非遗文化中国剪纸介绍2
- 药企销售总经理竞聘
- 开封市第一届职业技能大赛健康照护项目技术文件(国赛)
- 饮酒与糖尿病
- 公路电子收费系统安装合同范本
- 医院培训课件:《伤口评估与测量》
- 期末试卷(试题)-2024-2025学年四年级上册数学沪教版
- 《第一单元口语交际:即兴发言》教案-2023-2024学年六年级下册语文统编版
- 情侣自愿转账赠与协议书范本
- 综合实践项目 制作水族箱饲养淡水鱼 教学设计-2024-2025学年鲁科版生物六年级上册
评论
0/150
提交评论