版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初二数学一次函数知识点总结基本概念1、变量: 在一个变化过程中可以取不同数值的量。常量: 在一个变化过程中只能取同一数值的量。例题:在匀速运动公式vts中,v表示速度 ,t表示时间 ,s表示在时间t内所走的路程,则变量是_,常量是 _.在圆的周长公式c=2 r 中, 变量是 _, 常量是 _. 2、函数: 一般的,在一个变化过程中,如果有两个变量x 和 y,并且对于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量, y是 x 的函数。*判断 y 是否为 x 的函数,只要看x 取值确定的时候,y 是否有唯一确定的值与之对应例题:下列函数(1)y=
2、 x (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1 中,是一次函数的有()(a)4 个(b)3 个(c)2 个(d)1 个3、定义域: 一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法:( 1)关系式为整式时,函数定义域为全体实数;( 2)关系式含有分式时,分式的分母不等于零;( 3)关系式含有二次根式时,被开放方数大于等于零;( 4)关系式中含有指数为零的式子时,底数不等于零;( 5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。例题:下列函数中,自变量x 的取值范围是x2 的是()ay=2x by=12x c
3、y=24x dy=2x2x函数5yx中自变量x 的取值范围是_. 已知函数221xy,当11x时, y 的取值范围是()a.2325yb.2523yc.2523yd.2523y5、函数的图像一般来说, 对于一个函数, 如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(
4、按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 1 页,共 10 页 - - - - - - - - -精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 1 页,共 10 页 - - - - - - - - -解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象
5、直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质一般地,形如y=kx(k 是常数, k0) 的函数叫做正比例函数,其中k 叫做比例系数 . 注:正比例函数一般形式y=kx (k 不为零 ) k 不为零 x 指数为 1 b 取零当 k0 时,直线 y=kx 经过三、 一象限, 从左向右上升, 即随 x 的增大 y 也增大; 当 k0 时,图像经过一、三象限;k0,y 随 x 的增大而增大;k0 时,向上平移; 当 b0 ,图象经过第一、三象限;k0,图象经过第一、二象限;b0 ,y 随 x 的增大而增大;k0 时,将直线y=kx 的图象向上平移b 个单位;当 b0 b0 经过第
6、一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随 x 的增大而增大k0 时,向上平移;当b0 或 ax+b0( a,b 为常数, a0)的形式,所以解一元一次不等式可以看作:当一次函数值大 (小)于 0 时,求自变量的取值范围. 17、一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bcxba的图象相同 . (2)二元一次方程组222111cybxacybxa的解可以看作是两个一次函数y=1111bcxba和y=2222bcxba的图象交点 . 精品学习资料 可选择p d f - - - - - - - - - - -
7、 - - - 第 4 页,共 10 页 - - - - - - - - -精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 4 页,共 10 页 - - - - - - - - -一次函数基本题型题型一、点的坐标方法:x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点 a(m,n)在第二象限,则点(|m|,-n)在第 _象限;2、 若点 p( 2a-1,2
8、-3b)是第二象限的点,则a,b 的范围为 _;3、 已知 a(4, b) ,b(a,-2) ,若 a,b 关于 x 轴对称,则a=_,b=_; 若 a,b关 于y 轴 对 称 , 则a=_,b=_; 若 若a , b关 于 原 点 对 称 , 则a=_,b=_;4、 若点 m(1-x,1-y )在第二象限, 那么点 n( 1-x,y-1)关于原点的对称点在第_象限。题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若 ab x 轴,则(,0),(,0)aba xb x的距离为abxx;若 ab y 轴,则(0,),(0,)abayby
9、的距离为abyy;点(,)aaa xy到原点之间的距离为22aaxy1、 点 b( 2,-2)到 x 轴的距离是 _;到 y 轴的距离是 _;2、 点 c( 0,-5)到 x 轴的距离是 _;到 y 轴的距离是 _;到原点的距离是 _;3、 点 d(a,b)到 x 轴的距离是 _;到 y 轴的距离是 _;到原点的距离是_;4、 已 知 点p ( 3,0 ), q(-2,0), 则pq=_, 已 知 点110,0,22mn, 则mq=_;2, 1 ,2, 8ef,则 ef 两点之间的距离是_;已知点 g(2,-3) 、h(3,4) ,则 g、 h 两点之间的距离是_;5、 两点( 3,-4) 、
10、 (5,a)间的距离是2,则 a 的值为 _;6、 已知点 a(0,2) 、b(-3,-2) 、c(a,b) ,若 c 点在 x 轴上,且 acb=90 ,则 c 点坐标为 _. 题型三、一次函数与正比例函数的识别方法:若 y=kx+b(k,b 是常数, k0),那么 y 叫做 x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数, k0),这时, y 叫做 x 的正比例函数,当k=0 时,一次函数就成为若y=b,这时, y 叫做常函数。a 与 b 成正比例a=kb(k 0) 1、当 k_时,2323ykxx是一次函数;2、当 m_ 时,21345mymxx是一次函数;精品
11、学习资料 可选择p d f - - - - - - - - - - - - - - 第 5 页,共 10 页 - - - - - - - - -精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 5 页,共 10 页 - - - - - - - - -3、当 m_ 时,21445mymxx是一次函数;4、2y-3 与 3x+1 成正比例,且x=2,y=12, 则函数解析式为_;题型四、函数图像及其性质方法:函数图象性质经过象限变化规律y=kx+b (k、b 为常数,且 k0)k0 b0 b=0 b0 k0 b0 b=0 b0 一次函数y=kx+b(k0)
12、中 k、 b 的意义:k( 称为斜率 ) 表示直线y=kx+b(k0)的倾斜程度;b(称为截距)表示直线y=kx+b(k0)与 y 轴交点的,也表示直线在y 轴上的。同一平面内,不重合的两直线 y=k1x+b1(k10)与 y=k2x+b2(k20)的位置关系:当时,两直线平行。当时,两直线垂直。当时,两直线相交。当时,两直线交于y 轴上同一点。特殊直线方程:x轴 : 直线 y轴 : 直线与 x轴平行的直线与 y轴平行的直线精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 6 页,共 10 页 - - - - - - - - -精品学习资料 可选择p
13、d f - - - - - - - - - - - - - - 第 6 页,共 10 页 - - - - - - - - -一、三象限角平分线二、四象限角平分线1、对于函数y 5x+6,y 的值随 x 值的减小而 _。2、对于函数1223yx, y的值随 x 值的 _而增大。3、一次函数 y=(6-3m)x (2n4) 不经过第三象限,则m 、n 的范围是 _。4、直线 y=(6-3m)x (2n 4) 不经过第三象限,则m 、n 的范围是 _。5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第 _象限。6、无论 m 为何值,直线y=x+2m 与直线 y=-x+4
14、的交点不可能在第_象限。7、已知一次函数(1)当 m 取何值时, y 随 x 的增大而减小?(2)当 m 取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k0)的解析式。已知是直线或一次函数可以设y=kx+b (k0) ;若点在直线上,则可以将点的坐标代入解析式构建方程。1、若函数y=3x+b 经过点( 2,-6 ) ,求函数的解析式。2、直线 y=kx+b 的图像经过a(3,4)和点 b(2,7) ,3、如图 1 表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系求油箱里所剩油y(升)与行驶时间x
15、(小时)之间的函数关系式,并且确定自变量x的取值范围。4、一次函数的图像与y=2x-5 平行且与x 轴交于点( -2,0)求解析式。5、若一次函数y=kx+b 的自变量x 的取值范围是 -2 x6,相应的函数值的范围是-11y9,求此函数的解析式。精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 7 页,共 10 页 - - - - - - - - -精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 7 页,共 10 页 - - - - - - - - -6、已知直线y=kx+b 与直线 y= -3x +7 关
16、于 y 轴对称,求k、b 的值。7、已知直线y=kx+b 与直线 y= -3x +7 关于 x 轴对称,求k、b 的值。8、已知直线y=kx+b 与直线 y= -3x +7 关于原点对称,求k、b 的值。题型六、平移方法:直线y=kx+b 与 y 轴交点为( 0,b) ,直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b 即可。直线 y=kx+b 向左平移2 向上平移3 y=k(x+2)+b+3; ( “左加右减,上加下减”) 。1. 直线 y=5x-3 向左平移2 个单位得到直线。2. 直线 y=-x-2 向右平移2个单位得到直线3. 直线 y=2
17、1x 向右平移2 个单位得到直线4. 直线 y=223x向左平移 2 个单位得到直线5. 直线 y=2x+1 向上平移4 个单位得到直线6. 直线 y=-3x+5 向下平移6 个单位得到直线7. 直线xy31向上平移1 个单位,再向右平移1 个单位得到直线。8. 直线143xy向下平移2 个单位,再向左平移1 个单位得到直线_。9. 过点( 2,-3)且平行于直线y=2x 的直线是 _ _。10. 过点( 2,-3)且平行于直线y=-3x+1 的直线是 _. 11把函数 y=3x+1 的图像向右平移2 个单位再向上平移3 个单位,可得到的图像表示的函数是 _;12直线 m:y=2x+2 是直线
18、 n 向右平移2 个单位再向下平移5 个单位得到的,而(2a,7)在直线 n 上,则 a=_;题型七、交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 8 页,共 10 页 - - - - - - - - -精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 8 页,共 10 页 - - - - - - - - -往往选择坐标轴上的线段作
19、为底,底所对的顶点的坐标确定高;1、 直线经过( 1,2) 、 (-3,4)两点,求直线与坐标轴围成的图形的面积。2、 已知一个正比例函数与一个一次函数的图象交于点a(3,4) ,且 oa=ob (1)求两个函数的解析式; (2)求 aob 的面积;3、 已知直线m 经过两点 (1,6) 、 (-3,-2) ,它和 x 轴、y 轴的交点式b、a,直线 n 过点(2,-2) ,且与 y 轴交点的纵坐标是-3,它和 x 轴、 y 轴的交点是d、c;(1)分别写出两条直线解析式,并画草图;(2)计算四边形abcd 的面积;(3)若直线 ab 与 dc 交于点 e,求 bce 的面积。4、 如图, a、b 分别是 x 轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《单证管理流程》课件
- 《少儿青春期教育》课件
- 单位管理制度集粹选集人员管理
- 《电化学局部腐蚀》课件
- 单位管理制度合并汇编【员工管理篇】
- 单位管理制度分享合集职工管理篇
- 单位管理制度范例汇编员工管理篇
- 单位管理制度呈现汇编【人力资源管理篇】十篇
- 单位管理制度呈现大全员工管理篇十篇
- 2024班级安全教育工作总结范文(30篇)
- 管辖权异议仲裁申请书
- (完整版)中考英语作文必备好词好句
- T-CERDS 3-2022 企业ESG评价体系
- 落实国家组织药品集中采购使用检测和应急预案
- 报价经理岗位职责
- 汝州某燃煤热电厂施工组织设计
- 猪场配怀工作安排方案设计
- 《广东省普通高中学生档案》模板
- GB/T 2-2016紧固件外螺纹零件末端
- GB/T 12467.5-2009金属材料熔焊质量要求第5部分:满足质量要求应依据的标准文件
- GB 17740-1999地震震级的规定
评论
0/150
提交评论