版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学必修必修 人教人教a版版第三章三角恒等变换三角恒等变换章末整合提升章末整合提升1 1知识网络知识网络2 2专题突破专题突破知知 识识 网网 络络专专 题题 突突 破破三角函数求值主要有三种类型,即:(1)“给角求值”,一般给出的角都是非特殊角,从表面看较难,但仔细观察就会发现这类问题中的角与特殊角都有一定的关系,如和或差为特殊角,当然还有可能需要运用诱导公式(2)“给值求值”,即给出某些角的三角函数式的值,求另外一些三角函数式的值,这类求值问题关键在于结合条件和结论中的角,合理拆、配角当然在这个过程中要注意角的范围(3)“给值求角”,本质上还是“给值求值”,只不过往往求出的是特殊角的值,在
2、求出角之前还需结合函数的单调性确定角,必要时还要讨论角的范围专题一 三角函数的求值思路分析切化弦,然后通分,利用和差公式,约去非特殊角,得到结果典例 1三角函数式的化简,主要有以下几类:(1)对三角的和式,基本思路是降幂、消项和逆用公式;(2)对三角的分式,基本思路是分子与分母的约分和逆用公式,最终变成整式或较简式子;(3)对二次根式,则需要运用倍角公式的变形形式在具体过程中体现的则是化归的思想,是一个“化异为同”的过程,涉及切弦互化,即“函数名”的“化同”;角的变换,即“单角化倍角”“单角化复角”“复角化复角”等具体手段,以实现三角函数式的化简专题二 三角函数式的化简典例 2三角函数等式的证
3、明包括无条件三角函数等式的证明和有条件三角函数等式的证明对于无条件三角函数等式的证明,要认真分析等式两边三角函数式的特点,找出差异,化异角为同角,化异次为同次,化异名为同名,寻找证明的突破口对于有条件三角函数等式的证明,要认真观察条件式与被证式的区别与联系,灵活使用条件等式,通过代入法、消元法等方法进行证明专题三 三角恒等式的证明典例 3与三角恒等变形有关的综合问题一般有以下两种类型:(1)以三角恒等变形为主要的化简手段,考查三角函数的性质当给出的三角函数关系式较为复杂,我们要先通过三角恒等变换,将三角函数的表达式变形化简,将函数表达式变形为yasin(x)k或yacos(x)k等形式,然后再
4、根据化简后的三角函数,讨论其图象和性质(2)以向量运算为载体,考查三角恒等变形这类问题往往利用向量的知识和公式,通过向量的运算,将向量条件转化为三角条件,然后通过三角变换解决问题;有时还从三角与向量的关联点处设置问题,把三角函数中的角与向量的夹角统一为一类问题考查专题四 三角恒等变形的综合应用典例 4规律总结1.条件求值时,注意把已知条件和待求式先进行适当变形再求值2求三角函数型复合函数值域问题时,常常化为yasin(x)k形式或ya(sinx)2b(sinx)c形式后再求更好三角式的恒等变换是解三角函数问题的基础,所谓三角式的恒等变换,就是运用有关概念和公式把给定的三角式化为另一等价形式转化与化归的思想是三角恒等变换应用最广泛的,也是最基本的数学思想,它贯穿于三角恒等变换的始终,要认真体会理解,在解题过程中学会灵活应用专题五 转化与化归的思想典例 5一、选择题1在锐角abc中,设xsinasinb,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 区域招商引资合同样本
- 企业劳动合同范本合辑
- 交通工具租赁合同
- 家具定做采购合同书格式
- 办公楼租赁协议书示例
- 长期人寿保险合同解读
- 手机游戏独家代理协议模板
- 大学园服订购合同
- 2024军事后勤保障综合服务合同
- 2024年酒类销售用人劳务合同范本
- 民营猪肉销售合同模板
- 防性侵《学会自我保护,远离人身侵害》讲话稿
- 2024-2030年中国腐植酸行业竞争格局与运行形势分析报告
- 篮球 原地运球(课件)-2024-2025学年人教版体育与健康八年级全一册
- 23J916-1 住宅排气道(一)
- 2024年新人教版四年级数学上册《第5单元第5课时 梯形的认识》教学课件
- 2024年新人教版一年级数学上册第4单元《第1课时 10的再认识》课件
- 采购主管岗位招聘笔试题与参考答案(某大型国企)2024年
- 短视频运营及带货逻辑课件
- 2024年中国陶茶具市场调查研究报告
- 2022年江苏省普通高中学业水平测试生物试卷
评论
0/150
提交评论