版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、金堂县2015届高考数学二轮复习圆锥曲线考点透析刘际成【考点聚焦】考点1:圆锥曲线的定义与标准方程的求法;考点2:离心率与准线方程; 考点3:弦长与最值问题;考点4:定点与定值问题。【考点小测】1(天津卷)如果双曲线的两个焦点分别为、,一条渐近线方程为,那么它的两条准线间的距离是( )A B C D 解析:如果双曲线的两个焦点分别为、,一条渐近线方程为, ,解得,所以它的两条准线间的距离是,选C. 2(福建卷)已知双曲线(a>0,b<0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2) B. (1,2
2、) C.2,+ D.(2,+)解析:双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率, ,离心率e2=, e2,选C3(广东卷)已知双曲线,则双曲线右支上的点到右焦点的距离与点到右准线的距离之比等于A. B. C. 2 D. 4解析:依题意可知 ,故选C.4(辽宁卷)曲线与曲线的(A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同【解析】由知该方程表示焦点在x轴上的椭圆,由知该方程表示焦点在y轴上的双曲线,故只能选择答案A。【点评】本题考查了椭圆和双曲线方程及各参数的几何意义,同时着重考查了审题能力即参数范围对
3、该题的影响。5(全国卷I)双曲线的虚轴长是实轴长的2倍,则A B C D解:双曲线的虚轴长是实轴长的2倍, m<0,且双曲线方程为, m=,选A.6(全国II)已知ABC的顶点B、C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是(A)2 (B)6 (C)4 (D)12解析(数形结合)由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得的周长为4a=,所以选C7(山东卷)在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为(A) (B) (C) (D)解:不妨设椭圆方程为(a>b>0),则有,据
4、此求出e,选B8(四川卷)已知两定点,如果动点满足,则点的轨迹所包围的图形的面积等于(A) (B) (C) (D)解:两定点,如果动点满足,设P点的坐标为(x,y),则,即,所以点的轨迹所包围的图形的面积等于4,选B.9(四川卷)直线与抛物线交于两点,过两点向抛物线的准线作垂线,垂足分别为,则梯形的面积为(A)48 (B)56 (C)64 (D)72解析:直线与抛物线交于两点,过两点向抛物线的准线作垂线,垂足分别为,联立方程组得,消元得,解得,和, |AP|=10,|BQ|=2,|PQ|=8,梯形的面积为48,选A.10(上海卷)若曲线|1与直线没有公共点,则、分别应满足的条件是 解:作出函数
5、的图象, 如右图所示: 所以,;【典型考例】【问题1】求圆锥曲线的标准方程、离心率、准线方程等例1设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为4,求此椭圆方程、离心率、准线方程及准线间的距离.解:设椭圆的方程为或,则,解之得:,b=c4.则所求的椭圆的方程为或,离心率;准线方程,两准线的距离为16.例2(北京卷)椭圆的两个焦点F1、F2,点P在椭圆C上,且P F1F1F2,| P F1|=,| P F2|=.(I)求椭圆C的方程;(II)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的
6、方程。解法一:()因为点P在椭圆C上,所以,a=3.在RtPF1F2中,故椭圆的半焦距c=,从而b2=a2c2=4, 所以椭圆C的方程为1.()设A,B的坐标分别为(x1,y1)、(x2,y2). 由圆的方程为(x+2)2+(y1)2=5,所以圆心M的坐标为(2,1). 从而可设直线l的方程为 y=k(x+2)+1, 代入椭圆C的方程得 (4+9k2)x2+(36k2+18k)x+36k2+36k27=0. 因为A,B关于点M对称. 所以 解得,所以直线l的方程为 即8x-9y+25=0. (经检验,符合题意)解法二:()同解法一.()已知圆的方程为(x+2)2+(y1)2=5,所以圆心M的坐
7、标为(2,1). 设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1x2且 由得 因为A、B关于点M对称,所以x1+ x2=4, y1+ y2=2,代入得,即直线l的斜率为,所以直线l的方程为y1(x+2),即8x9y+25=0.(经检验,所求直线方程符合题意.)【问题2】圆锥曲线的定义的问题例3(四川卷)如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则 ;例4(江西卷)P是双曲线的右支上一点,M、N分别是圆(x5)2y24和(x5)2y21上的点,则|PM|PN|的最大值为( )A. 6 B.7 C.8 D.9解:设双曲线的两个焦点分
8、别是F1(5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时|PM|PN|(|PF1|2)(|PF2|1)1019故选B例5、F是椭圆的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点。(1)的最小值为 (2)的最小值为 分析:PF为椭圆的一个焦半径,常需将另一焦半径或准线作出来考虑问题。解:(1)4- 设另一焦点为,则(-1,0)连A,P 当P是A的延长线与椭圆的交点时, 取得最小值为4-。(2)3 作出右准线l,作PHl交于H,因a2=4,b2=3,c2=1, a=2,c=1,e=,当A、P、H三点共线时,其和
9、最小,最小值为例6、(1)抛物线C:y2=4x上一点P到点A(3,4)与到准线的距离和最小,则点 P的坐标为_ (2)抛物线C: y2=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为 。分析:(1)A在抛物线外,如图,连PF,则,因而易发现,当A、P、F三点共线时,距离和最小。(2)B在抛物线内,如图,作QRl交于R,则当B、Q、R三点共线时,距离和最小。解:(1)(2,)连PF,当A、P、F三点共线时,最小,此时AF的方程为 即 y=2(x-1),代入y2=4x得P(2,2),(注:另一交点为(),它为直线AF与抛物线的另一交点,舍去)(2)()过Q作QRl交于R,当B、
10、Q、R三点共线时,最小,此时Q点的纵坐标为1,代入y2=4x得x=,Q()点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。【问题3】直线与圆锥曲线位置关系问题利用数形结合法或将它们的方程组成的方程组转化为一元二次方程,利用判别式、韦达定理来求解或证明.例7抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求AMN面积最大时直线l的方程,并求AMN的最大面积 命题意图 直线与圆锥曲线相交,一个重要的问题就是有关弦长的问题 本题考查处理直线与圆锥曲线相交问题的第一种方法“韦达定理法” 知识
11、依托 弦长公式、三角形的面积公式、不等式法求最值、函数与方程的思想 错解分析 将直线方程代入抛物线方程后,没有确定m的取值范围 不等式法求最值忽略了适用的条件 技巧与方法 涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,涉及垂直关系往往也是利用韦达定理,设而不求简化运算 解法一 由题意,可设l的方程为y=x+m,其中5m0 由方程组,消去y,得x2+(2m4)x+m2=0 直线l与抛物线有两个不同交点M、N,方程的判别式=(2m4)24m2=16(1m)0,解得m1,又5m0,m的范围为(5,0)设M(x1,y1),N(x2,y2)则x1+x2=42m,x1·x2=m2,|MN|
12、=4 点A到直线l的距离为d= S=2(5+m),从而S2=4(1m)(5+m)2=2(22m)·(5+m)(5+m)2()3=128 S8,当且仅当22m=5+m,即m=1时取等号 故直线l的方程为y=x1,AMN的最大面积为8 解法二 由题意,可设l与x轴相交于B(m,0), l的方程为x = y +m,其中0m5 由方程组,消去x,得y 24 y 4m=0 直线l与抛物线有两个不同交点M、N,方程的判别式=(4)2+16m=16(1+m)0必成立,设M(x1,y1),N(x2,y2)则y 1+ y 2=4,y 1·y 2=4m,S= 4=4S8,当且仅当即m=1时取等
13、号 故直线l的方程为y=x1,AMN的最大面积为8 例8(福建卷)已知椭圆的左焦点为F,O为坐标原点。()求过点O、F,并且与椭圆的左准线l相切的圆的方程;()设过点F且不与坐标轴垂直交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力。解:(I)圆过点O、F,圆心M在直线上。设则圆半径由得解得所求圆的方程为(II)设直线AB的方程为代入整理得直线AB过椭圆的左焦点F,方程有两个不等实根。记中点则的垂直平分线NG的方程为令得点G横坐标的取值范围为【问题4】圆锥曲线中
14、的最值、定点、定值问题例9:过抛物线:(0)的焦点作直线交抛物线于两点,若线段与的长分别为,则的值必等于( )A B C D图1解法1:(特殊值法)令直线与轴垂直,则有:,所以有解法2:(参数法)如图1,设,且,分别垂直于准线于,抛物线(0)的焦点,准线来源:Zxxk.Com :又由,消去得, 例10: (2011·北京东城区期末)已知椭圆C的中心在原点,一个焦点为F(0,),且长轴长与短轴长的比是1.(1)求椭圆C的方程;(2)若椭圆C上在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)在(2
15、)的条件下,求PAB面积的最大值解(1)设椭圆C的方程为1(a>b>0)由题意,得解得a24,b22.所以椭圆C的方程为1.(2)由题意知,两直线PA,PB的斜率必存在,设PB的斜率为k.又由(1)知,P(1,),则直线PB的方程为yk(x1)由得(2k2)x22k(k)x(k)240.设A(xA,yA),B(xB,yB),则xB1·xB,同理可得xA.则xAxB,yAyBk(xA1)k(xB1).所以kAB为定值(3)由(2),设直线AB的方程为yxm.由得4x22mxm240.由(2m)216(m24)>0,得m2<8.此时xAxB,xA·xB.
16、点P到直线AB的距离d,|AB| .SPABd·|AB|· 当且仅当m28m2即m24时,Smax.例11:在双曲线的一支上有不同的三点与焦点的距离成等差数列。(1)求的值。(2)证明线段的垂直平分线经过一定点,并求该定点的坐标。分析:(1),成等差数列,则结合定义得 ,(2)由此,可设弦的中点坐标为由弦的中垂线方程为:故弦的中垂线过定点。例12:过抛物线上的定点作两条互相垂直的弦、,求证直线过定点。分析:设,则 因为点、与点不重合,所以故,直线的方程为:所以直线过定点。【问题5】求轨迹方程的常见方法1、直接法w.w.w.k.s.5.u.c.o.m当所求动点的要满足的条件简
17、单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例13 已知点、动点满足,则点的轨迹为( ) A圆 B椭圆 C双曲线 D抛物线解: ,. 由条件,整理得,此即点的轨迹方程,所以的轨迹为抛物线,选D.2、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.CByxOA例14 已知中,、的对边分别为、,若依次构成等差数列,且,求顶点的轨迹方程.解:如右图,以直线为轴,线段的中点为原点建立直角坐标系. 由题意,构成等差数列,即,又,的轨迹为椭圆的左半部分
18、.在此椭圆中,故的轨迹方程为.3、代入法yQOxNP当题目中有多个动点时,将其他动点的坐标用所求动点的坐标来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点的轨迹方程,称之代入法,也称相关点法、转移法.例15 如图,从双曲线上一点引直线的垂线,垂足为,求线段的中点的轨迹方程.解:设,则.在直线上, 又得即.联解得.又点在双曲线上,化简整理得:,此即动点的轨迹方程.4、几何法几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.例16 已知点、,过、作两条互相垂直的直线和,求和的交点的轨迹方程.解:由平面几何知识可知,当为直角三
19、角形时,点的轨迹是以为直径的圆.此圆的圆心即为的中点,半径为,方程为. 故的轨迹方程为.5、参数法 参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标间建立起联系,然后再从所求式子中消去参数,得到间的直接关系式,即得到所求轨迹方程.例17 过抛物线()的顶点作两条互相垂直的弦、,求弦的中点的轨迹方程.解:设,直线的斜率为,则直线的斜率为.直线OA的方程为,由解得,即,同理可得.由中点坐标公式,得,消去,得,此即点的轨迹方程.6、交轨法求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.xA1A2OyNMP例18 如
20、右图,垂直于轴的直线交双曲线于、两点,为双曲线的左、右顶点,求直线与的交点的轨迹方程,并指出轨迹的形状.解:设及,又,可得直线的方程为;直线的方程为.×得. 又,代入得,化简得,此即点的轨迹方程. 当时,点的轨迹是以原点为圆心、为半径的圆;当时,点的轨迹是椭圆.【问题6】离心率范围w.w.w.k.s.5.u.c.o.m例19:设椭圆的左、右焦点分别为,如果椭圆上存在点P,使,求离心率e的取值范围。解:设法1:利用曲线范围。由得,将这个方程与椭圆方程联立,消去y,可解得。由椭圆的性质知,得。法2:利用二次方程有实根。由椭圆定义知,又因为,可得,则,解法3:利用三角函数有界性记 又因为,
21、则解法5:利用基本不等式由椭圆定义,有平方后得解法6:巧用图形的几何特性由,知点P在以为直径的圆上。又点P在椭圆上,因此该圆与椭圆有公共点P,故有例20已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线的离心率的取值范围是( )A B C D解析:从双曲线的渐近线入手。若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,只须此直线与双曲线的渐近线不相交即可。,选C课后训练1(安徽卷)若抛物线的焦点与椭圆的右焦点重合,则的值为A B C D解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D。2(天津卷)椭圆的中心为点,它的一个焦点为,相应于
22、焦点的准线方程为,则这个椭圆的方程是()解析:椭圆的中心为点它的一个焦点为 半焦距,相应于焦点F的准线方程为 ,则这个椭圆的方程是,选D.3. (山东卷)设直线关于原点对称的直线为,若与椭圆的交点为A、B、,点为椭圆上的动点,则使的面积为0.5的点的个数为( B )(A)1 (B)2 (C)3 (D)44. (江苏卷)点P(-3,1)在椭圆的左准线上.过点P且方向为a=(2,-5)的光线,经直线=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A ) ( B ) ( C ) ( D ) 5. (重庆卷)已知,B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P
23、的轨迹方程为。6(江苏卷)已知三点P(5,2)、(6,0)、(6,0). ()求以、为焦点且过点P的椭圆的标准方程;()设点P、关于直线yx的对称点分别为、,求以、为焦点且过点的双曲线的标准方程。本小题主要考查椭圆与双曲线的基本概念、标准方程、几何性质等基础知识和基本运算能力。解:(1)由题意可设所求椭圆的标准方程为(a>b>0),其半焦距c=6,b2=a2-c2=9.所以所求椭圆的标准方程为(2)点P(5,2)、F1(-6,0)、F2(6,0)关于直线y=x的对称点分别为点P,(2,5)、F1,(0,-6)、F2,(0,6).设所求双曲线的标准方程为由题意知,半焦距c1=6,b1
24、2=c12-a12=36-20=16. 所以所求双曲线的标准方程为7(全国卷I)在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求:()点M的轨迹方程; ()的最小值。.解: 椭圆方程可写为: + =1 式中a>b>0 , 且 得a2=4,b2=1,所以曲线C的方程为: x2+ =1 (x>0,y>0). y=2(0<x<1) y '= 设P(x0,y0),因P在C上,有0<x0<1, y0=2, y '|x=x0= ,得切线AB的
25、方程为: y= (xx0)+y0 . 设A(x,0)和B(0,y),由切线方程得 x= , y= .由= +得M的坐标为(x,y), 由x0,y0满足C的方程,得点M的轨迹方程为: + =1 (x>1,y>2) ()| 2= x2+y2, y2= =4+ , 2= x21+54+5=9.且当x21= ,即x=>1时,上式取等号.故的最小值为3.8(上海卷)在平面直角坐标系O中,直线与抛物线2相交于A、B两点(1)求证:“如果直线过点T(3,0),那么3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由解(1)设过点T(3,0)的直线交抛物线y2=
26、2x于点A(x1,y1)、B(x2,y2).当直线的钭率不存在时,直线的方程为x=3,此时,直线与抛物线相交于点A(3,)、B(3,). =3; 当直线的钭率存在时,设直线的方程为,其中, 由得 又 , , 综上所述,命题“如果直线过点T(3,0),那么=3”是真命题;(2)逆命题是:设直线交抛物线y2=2x于A、B两点,如果=3,那么该直线过点T(3,0).该命题是假命题. 例如:取抛物线上的点A(2,2),B(,1),此时=3,直线AB的方程为:,而T(3,0)不在直线AB上;说明:由抛物线y2=2x上的点A (x1,y1)、B (x2,y2) 满足=3,可得y1y2=6,或y1y2=2,如果y1y2=6,可证得直线AB过点(3,0);如果y1y2=2,可证得直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB11T 1065-2014 城市基础地理信息矢量数据要素分类与代码
- 江苏省盐城市2024-2025学年高三上学期11月期中物理试题(无答案)
- 化妆品用香料产业深度调研及未来发展现状趋势
- 家禽料槽市场需求与消费特点分析
- 冷链餐饮供应链行业相关项目经营管理报告
- 妇女腹带产业深度调研及未来发展现状趋势
- 江苏省南通市海门区东洲小学等2024-2025学年四年级上学期11月期中科学试题
- 包装袋用纸产业规划专项研究报告
- 传送高功率电子束的波导管产业运行及前景预测报告
- 小学语文“搭石”说课稿
- “7_16”大连保税区油库特大爆炸事故原因调查
- 硕士研究生入学登记表
- PCBA常见的一般性不良现象
- 弘扬伟大长征精神图文.ppt
- 六年级数学下册 圆锥的体积教案 西师大版 教案
- 董公选择日要览[整理版]
- 师德的五项修炼(修心、修口、修眼、修耳、修身)
- 各科室廉政风险点排查表
- 天津市宝坻区土地利用总体规划(2015-2020年)
- LED路灯说明书
- [专业英语考试复习资料]专业八级分类模拟41
评论
0/150
提交评论