




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学思想方法的突破 一、模糊数学产生的背景 模糊数学是在特定的历史背景中产生的,它是数学适应现代科学技术需要的产物。首先,现实世界中存在着大量模糊的量,对这类量的描述和研究需要一种新的数学工具。我们知道,现实世界中的量是多种多样的,如果按着界限是否分明,可把这无限多样的量分为两类:一类是明晰的,另一类是模糊的。实践表明,在自然界、生产、科学技术以及生活中,模糊的量是普遍存在的。例如“高压”、“低温”、“偏上”、“适度”、“附近”、“美丽”、“温和”、“老年”、“健康”等等。这些概念作为现实世界事物和现象的状态反映,在量上是没有明晰界限的。模糊数学产生之前的数学,只能精确地描述和研究那些界限分明
2、的量,即明晰的量,把它们用于描述和研究模糊的量就失效了。对那些模糊的量,只有用一种“模糊”的方法去描述和处理,才能使结果符合实际。因此,随着社会实践的深化和科学技术的发展,对“模糊”数学方法进行研究也就成为十分必要的了。其次,电子计算机的发展为模糊数学的诞生准备了摇篮。自本世纪40年代电子计算机问世以来,电子计算机在生产、科学技术各领域的应用日益广泛。电子计算机发展的一个重要方向是模拟人脑的思维,以便能处理生物系统、航天系统以及各种复杂的社会系统。而人脑本身就是一种极其复杂的系统。人脑中的思维活动之所以具有高度的灵活性,能够应付复杂多变的环境,一个重要原因是逻辑思维和非逻辑思维同时在起作用。一
3、般说来,逻辑思维活动可用明晰数学来描述和刻画,而非逻辑思维活动却具有很大的模糊性,无法用明晰数学来描述和刻划。因此,以二值逻辑为理论基础的电子计算机,也就无法真实地模拟人脑的思维活动,自然也就不具备人脑处理复杂问题的能力。这对电子计算机特别是人工智能的发展,无疑是一个极大的障碍。为了把人的自然语言算法化并编入程序,让电子计算机能够描述和处理那些具有模糊量的事物,从而完成更为复杂的工作,就必须建立起一种能够描述和处理模糊的量及其关系的数学理论。这就是模糊数学产生的直接背景。模糊数学的创立者是美国加利福尼亚大学的札德教授。为了改进和提高电子计算机的功能,他认真研究了传统数学的基础-集合论。他认为,
4、要想从根本上解决电子计算机发展与数学工具局限性的矛盾,必须建立起一种新的集合理论。1965年,他发表了题为模糊集合的论文,由此开拓出了模糊数学这一新的数学领域。二、模糊数学的理论基础明晰数学的理论基础是普通集合论,模糊数学的理论基础则是模糊集合论。札德也正是从模糊集合论着手,建立起模糊数学的。模糊集合论与普通集合论的根本区别,在于两者赖以存在的基本概念-集合的意义不同。普通集合论的基本概念是普通集合即明晰集合。对于这种集合,一个事物与它有着明确的隶属关系,要么属于这个集合,要么不属于这个集合,两者必居其一,不可模棱两可。如果用函数关系式表示,可写成这里的A(u)称为集合A的特征函数。特征函数的
5、逻辑基础是二值逻辑,它是对事物“非此即彼”状态的定量描述,但不能用于刻划某些事物在中介过渡时所呈现出的“亦此亦彼”性。例如,取A为老年人集合,u为一个年龄为50岁的人,我们拿不出什么令人信服的理由来确定A(u)的值是1还是0.这正是普通集合论的局限之所在。与普通集合不同,模糊集合的逻辑基础是多值逻辑。对于这种集合,一个事物与它没有“属于”或“不属于”这种绝对分明的隶属关系,因而也就不能用特征函数A(u)来描述。那么,怎样才能定量地描述模糊集合的性质和特征呢?模糊集合论的创立者札德给出了隶属函数的概念,用以代替普通集合论中的特征函数概念。隶属函数的实质,是将特征函数由二值0,1推广到0,1闭区间
6、上的任意值。通常把隶属函数表示为(u),它满足0(u)1(或记作(u)0,1)有了隶属函数概念,就可给模糊集合下一个准确的定义了。札德在1965年的论文中给出了如下的定义:隶属函数的选取是一个较为复杂的问题,目前还没有一个固定和通用的模式,它依问题的不同可以有不同的表达形式。在许多情况下,它是凭借经验或统计分析确定的。例如,某小组有五名同学,记作u1,u2,u3,u4,u5,取论域.现在取为由“性格稳重”的同学组成的集合,显然这是一个模糊集合。为确定每个同学隶属于的程度,我们分别给每个同学的性格稳重程度打分,按百分制给分,再除以100.这里实际上就是求隶属函数,如果打分的结果是u1得85分,u
7、2得75分,u3得98分,u4得30分,u5得60分那么隶属函数的值应是可表示为还可表示为或普通集合与模糊集合有着内在的联系,这可由特征函数A(u)和隶属函数的关系来分析。事实上,当隶属函数只取0,1闭区间的两端点值0,1时,隶属函数也就退化为特征函数A(u),从而模糊子集也就转化为普通集合A.这就表明普通集合是模糊集合的特殊情况,模糊集合是普通集合的推广,它们既相互区别,又相互联结,而且在一定条件下相互转化。正因为有此内在的联系,决定了模糊数学可以广泛地使用明晰数学的方法,从明晰数学到模糊数学存在着由此达彼的桥梁。模糊数学作为一门新兴的数学学科,虽然它的历史很短,但由于它是在现代科学技术迫切需要下应运而生的,因而对于它的研究,无论是基础理论还是实际应用,都得到了迅速的发展。就其基础理论而言,模糊数学研究的课题已涉及到广泛的范围,如模糊数、模糊关系、模糊矩阵、模糊图、模糊映射和变换、模糊概率、模糊判断、模糊规划、模糊逻辑、模糊识别和模糊控制等。在应用方面,模糊数学的思想与方法正在广泛渗透到科学和技术的各个领域,如物理学、化学、生物学、医学、心理学、气象学、地
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 你什么的样子真美中考语文作文
- 稻谷加工与粮食产后处理设备选型指导考核试卷
- 印刷业发展趋势与前瞻考核试卷
- 碳酸饮料行业产品销售渠道研究考核试卷
- 竹纤维复合材料制备与应用考核试卷
- 检验医学在慢性肾病监测中的重要性考核试卷
- 文化娱乐活动策划与组织考核试卷
- 硅冶炼过程中的热力学分析与优化考核试卷
- 水产加工品安全风险监测与预警机制构建考核试卷
- 纺织品纱线市场趋势分析考核试卷
- 企业财务管理优化方案
- NB-T 47013.2-2015 承压设备无损检测 第2部分-射线检测
- 实用版建筑工程工程合同模板
- 新型马路划线机设计
- 《儿科学》课件第9章第九节 腹泻病
- 小学生主题班会 拒绝作弊+诚信考试+宣传教育 课件(共28张PPT)
- 2023煤炭矿区地质勘查成果总结报告编写规范
- 职业病危害与防治培训PPT模板(含完整内容)13
- 新员工入职消防安全教育培训记录
- 《新编药学实验教程(上、下)》读书笔记模板
- 幼小衔接工作指导手册【完整版】
评论
0/150
提交评论