版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、the royal swedish academy of sciences image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computational content, proposit
2、ionsastypes steveawodey andrejbauer institutmittag-le er theroyalswedishacademyofsciences june2021 abstract imagefactorizationsinregularcategoriesarestableunderpull-backs,sotheymodelanaturalmodaloperatorindependenttypethe-ory.thisunarytypeconstructorahasturneduppreviouslyinasyntacticformasawayoferas
3、ingcomputationalcontent,andformal-izinganotionofproofirrelevance.indeed,semantically,thenotionofasupportissometimesusedassurrogatepropositionassertinginhab-itationofanindexedfamily. wegiverulesforbrackettypesindependenttypetheoryandpro-videcompletesemanticsusingregularcategories.weshowthatdepen-dent
4、typetheorywiththeunittype,strongextensionalequalitytypes,strongdependentsums,andbrackettypesistheinternaltypetheoryofregularcategories,inthesamewaythattheusualdependenttypetheorywithdependentsumsandproductsistheinternaltypetheoryoflocallycartesianclosedcategories. wealsoshowhowtointerpret rst-orderl
5、ogicintypetheorywithbrackets,andwemakeuseofthetranslationtocomparetypetheorywithlogic.speci cally,weshowthatthepropositions-as-typesinter-pretationiscompletewithrespecttoacertainfragmentofintuitionistic rst-orderlogic.asaconsequence,amodi eddouble-negationtrans-lationintotypetheory(withoutbrackettyp
6、es)iscompleteforallofclassical rst-orderlogic. msc2000classi cation:03g30,03b15,18c50 keywords:categoricallogic,typetheory,regularcategories,brackettypesdepartmentofphilosophy,carnegiemellonuniversity,pittsburgh,usa,e-mail: imfmdepartmentofmathematics,universityinljubljana,slovenia,e-ma
7、il:andrej.bauer 1 image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computational content, acknowledgement.wegratefully
8、acknowledgethesupportofthein-stitutmittag-le er,theroyalswedishacademyofsciences,wherethisresearchwasconducted.wealsothankpeteraczel,larsbirkedal,thierrycoquand,nicolagambino,millimaietti,permartin-lof,grigorimints,erikpalmgren,frankpfenning,danascott,andantonsetzerfortheircontributions.thisworkispa
9、rtofthelogicoftypesandcomputationprojectatcarnegiemellonuniversityunderthedirectionofdanascott.1introduction accordingtooneconceptionofthetheoryoftypes,propositionsandtypesareidenti ed: propositions=types. thisideaiswell-knownundertheslogan“propositionsastypes”,andhasbeendevelopedbymartin-lofml84and
10、othershow80,tai.inthisre-portwedistinguishpropositionsandtypes,butstaywithinatype-theoreticframework.weregardsometypestobepropositions,butnotnecessarilyallofthem.additionally,eachtypeahasanassociatedpropositiona.thisgivesusacorrespondence propositionstypes whichisinfactanadjunction.sinceitwillturnou
11、tthatp=pforanypropositionp,thepropositionsareexactlythetypesintheimageofthebracketconstructor .wecallthesetypesathebrackettypes.thepictureisthensimply propositions=types. theseideasarenotnew.ourworkoriginatedwithfrankpfenningsbrackettypesforerasingcomputationalcontentpfe01.speakingsomewhatvaguely,th
12、eideaistouseabrackettypeforhidingcomputationalcontentofatype.asasimpleexample,considerthecomputationalcontentofatermpoftype n:nm:neq(2m,n)+m:neq(2m+1,n). givenanaturalnumbern,thenpn= i,m ,wherei0,1andmn,suchthatn=2m+i.bybracketingthetwodependentsums,weobtainthetype .n:nm:neq(2m,n)+m:neq(2m+1,n) 2 im
13、age factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computational content, atermqofthistypehidestheinformationthatisprovide
14、dbythedependentsumssothatqniseither0or1,dependingonwhethernisevenorodd.intheextremecase,atermroftype n:nm:neq(2m,n)+m:neq(2m+1,n) doesnotcarryanycomputationalcontentatallitjustwitnessesthefactthateverynumberisevenorodd. thebrackettypeswhichweconsiderareessentiallythesameasthemonotypesofmaiettimai98,
15、inasuitablesetting.palmgrenpal01formulatedabhkinterpretationofintuitionisticlogicandusedimagefactorizations,whichareusedinthesemanticsofourbrackettypes,torelatethebhkinterpretationtothestandardcategory-theoreticinterpretationofproposi-tionsassubobjects.aczelandgambinoag01havepromotedwhattheycalllogi
16、c-enrichedtypetheoryinwhichtheyseparatethelogicfromtypethe-ory.thebrackettypescanbeusedtotranslatetheprimitivelogicbackintotypetheory(theusualtranslationof“propositionsastypes”worksaswell).alreadyinhisdialecticaarticle,lawverelaw69proposedacategoricaltreatmentofprooftheorythatiscloselyrelatedtobrack
17、ettypes. thereportisorganizedasfollows.insection2weintroducethebrackettypes.insection3wegivethesemanticsofbrackettypesinregularcat-egories,andproveitssoundnessandcompleteness.insection4westudysomepropertiesofbrackettypes.insection5weshowhowbrackettypesareusedinconjunctionwithotherdependenttypestode
18、nethelogicalconnectivesandquanti erswithintypetheory.insection6weusebrackettypestocomparetwointerpretationsoflogic:thestandard“propositionsastypes”interpretation,andtheusual rst-orderone. 2brackettypes weconsideramartin-lofstyledependenttypetheoryml84,ml98.fortheformulationofbrackettypeswedonotneedd
19、ependentsumsorproducts,butwesometimesassumethattheyarepresentinthetypetheory.weworkinatypetheorywithstrongandextensionalequalityandstrongdependentsums,cf.jac99.forreference,welisttherulesinappendixa. amongthetypes,therearesomethatsatisfythefollowingconditionof“proofirrelevance”: ptype q:p p=q:p p:p(
20、1) inwords,thismeansthatanytwotermspandqofsuchatypepare(extensionally)equal.wecallthetypessatisfyingproofirrelevanceproposi-tions.theywerecalledmonotypesbymaiettimai98,andthereareotherequivalentformulations. 3 image factorizations in regular categories are stable under pullbacks, so they model a nat
21、ural modal operator in dependent type theory. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computational content, ifpandqarepropositionsinthissense,thenclearlysoare 1,pq,pq,x:ap whereinthelastexpressionpmaydependonanarbitrarytypea.inlogicalterms,this
22、meansthatpropositionsarealreadyclosedunderthefollowinglogicaloperations: t,pq,p= q, x:a.p. insection5wewillseehowtode netheremaining rst-orderlogicaloper-ations. becauseofproofirrelevance,ifapropositionpisinhabited,thenitissobypreciselyoneterm(uptoextensionalequality).thus,atypingjudgment p:p islike
23、astatementofpstruth, ptrue aspdoesnotplayanyroleotherthanuniquelywitnessingthefactthatpholds. weintroduceanewtypeconstructor whichassociatestoeachtypeaapropositiona,calledtheassociatedpropositionofa.theaxiomsgiveninfigure1weredesignedwiththefollowingadjunctioninmind,foranytypeaandpropositionp: x:a p
24、:p x :a p :p(2) ingtherulesprovidedinfigure1,wecantakep =(pwherex=x ),sincetheequalityconditiononp:pforeliminationissatis edbyproofirrelevance(1).seeremark5insection7forconsiderationofalternateformulationsofbrackettypes. asanexample,letusshowthatthetermformingoperation isepicinthefollowingsense: ,x:
25、a sx/u=tx/u:b ,u:a s=t:b(3) ifwethinkofaterm,x:a r:basanarrowabintheslicecategoryover,aswewillinsection3,thenwehavethefollowingsituationover: a as tb 4 image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. this unary t
26、ype constructor a has turned up previously in a syntactic form as a way of erasing computational content, brackettypes atypeformation atype q:a btype a:aintro a:a,x:a b:b,x:a,y:a b=by/x:belim bwherex=q:b p:a q:aequality p=q:a conversions bwherex=a bx/uwherex=q=ba/xbq/u freevariables fv(a)=fv(a) fv(a
27、)=fv(a) fv(bwherex=q)=(fv(b)x)fv(q) substitution at/x=at/x at/x=at/x (bwherex=q)t/y=bt/ywherex=(qt/y) (providedx=yandcaptureofxintisavoided) compatibilityrules a=a a=a b=b q=q = = = a=a a=a (bwherex=q)=(b wherex=q ) figure1:brackettypes 5 image factorizations in regular categories are stable under p
28、ullbacks, so they model a natural modal operator in dependent type theory. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computational content, now(3)saysthats =t impliess=tforarbitrarys,t:ab,whichmeansthat isepic.toprove(3),observe rstthatbytheequali
29、tyrulewehave ,x:a,y:a x=y:a therefore ,x:a,y:a sx/u=sy/u:a whichmeansthatwecanformthetermsx/uwherex=u.similarly,wecanformthetermtx/uwherex=u.nowweget s=(sx/uwherex=u)=(tx/uwherex=u)=t. thesecondequalityfollowsfromtheassumptionsx/u=tx/uandthecompatibilityruleforwhereterms. aconsequenceof(3)isthefollo
30、wingconversion,calledexchange:bwherex=(pwherey=q)=(bwherex=p)wherey=q.theruleisvalidwheny=xandyfv(b).by(3)itsu cestoverifytheexchangeruleforthecaseq=zwherez:aisafreshvariable.wethenget(bwherex=p)wherey=z= = =bz/ywherex=(pz/y)bwherex=(pz/y)bwherex=(pwherey=z) inthesecondequalitywetookintoaccountthefa
31、ctthatydoesnotoccurfreelyinb,andinthethirdequalityweappliedtheruletothesubtermpz/y,whichwecandobecauseofthecompatibilityrules. 3categoricalsemanticsofbrackettypes inthissectionwepresentasemanticsforbrackettypesinregularcategories,seee.g.bor94forthelatter.therulesinfigure1aresoundandcompleteforsuchse
32、mantics. de nition3.1aregularcategorycisacategorywith nitelimitsinwhich 1.everykernelpairhasacoequalizer,and 2.thepullbackofaregularepimorphismisaregularepimorphism. 6 image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theo
33、ry. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computational content, the rstconditionstatesthatinaregularcategorywecanformquo-tientsbyequationallyde nedequivalencerelations,andthesecondconditionrequiressuchquotientstobehavewellwithrespectto niteli
34、mits. letus rstrecallhowtointerpretdependenttypetheorywithdependent sumsandstrongextensionalequalityeqinacategorywith nitelimits.weusethesemanticbracketxtodenotetheinterpretationofx,wherexcouldbeatype,aterm,acontext,orajudgment.whennoconfusioncanarise,weomitthesemanticbrackets,especiallyindiagrams,i
35、nordertoimprovereadability.weusuallydenotetheinterpretationofacontextx1:a1,.,xn:anas(a1,.,an)insteadofx1:a1,.,xn:an. theemptycontextisinterpretedastheterminalobject1.theinter-pretationofatypeinacontext atype isgivenintheslicecategoryc/byanarrow,calledadisplaymap, ,x:a a wherewehereabbreviatedthename
36、ofthearrow.itsdomainistheinter-pretationofthecontext,x:a. aterminacontext t:a isinterpretedbyapointof(,a)intheslicec/ () t:abbbbbb=b ()(,a)xxxxxx axx inotherwords,aterm t:aisinterpretedasasectionoftheinterpre-tationof atype.normally,wewritejusttortinsteadof t:a. weinterpretsubstitutionsofatermaforav
37、ariablex, a:a,x:a btype ba/xtype a:a,x:a t:b ta/x:ba/x 7 image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computationa
38、l content, asindicatedinthefollowingpullbackdiagram: ()(,x:a)mmmiiiimmmiita/xmmmtiimmmiiiimmmiimmm(,x:a,b),ba/x_= ba/x,x:a ba()(,a) theinterpretationofadependentsumformedas ,x:a btype x:abtype isthecompositionofthearrows (,a,b) ,a b (,a) a ab () thisgivesusaconnectionbetweentheinterpretationofcontex
39、ts andde-pendentsums,becauseitmustbethecasethat,a,b=,x:ab. theinterpretationofanequalitytypeformedas s:a t:a eqa(s,t)type istheequalizerofsandt,asinthefollowingdiagram: (,eqa(s,t) eqa(s,t)()s t(,a) whensandtarethesameterm,theequalizeristrivialandwehave ,eqa(t,t)= fromthisweobtaintheinterpretationofa
40、re exivityterm t:a r(t):eqa(t,t) 8 image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computational content, simplyasthe
41、identityarrow ()r(t)=1()=(,eq(t,t)a next,wegivetheinterpretationofthe rstandthesecondprojectionfromadependentsum.considertheterms p:x:ab p:x:ab 1(p):a 2(p):b1(p)/x weinterpret1(p)asthecompositionofarrows ()p(,a,b),a b(,a) and2(p)asinthefollowingdiagram:()nnnn2(p)nnnnnnp =(,b1(p)/x)_(,x:a,b) ,a b ()1
42、(p)(,a) thearrow2(p)istheuniquearrowobtainedfromtheuniversalpropertyofthedisplayedpullbackdiagram.adependentpairformedas a:a,x:a btype b:ba/x a,b :x:ab (,a,b) ,a bisinterpretedasthecompositionofbwiththetoparrowinthediagram(,ba/x)_b ba/x ()(,a) this completestheoutlineoftheinterpretationofdependentty
43、petheorywithandeqtypesina nitelycompletecategory. remark3.2itiswellknownthatcertaincoherenceproblemsarisewhenweinterpretdependenttypetheoryasabove.theproblemsarecausedbythefactthatingeneraltheresultofsuccessivepullbacksalongar-rowsg:bcandf:abisonlyisomorphictothepullbackalong 9 image factorizations
44、in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computational content, thecompositiong f,whereasforacompletelywater-tightinterpretationequ
45、alityisrequired. thereareseveralstandardwaysofresolvingthisproblem,mostnotablybyinterpretingthetypetheoryinasuitable beredcategoryjac99,andthenapplyingtechnicalresultspertainingtothesehof95.wedonotwishtoobscuremattersbyemployingsuchtechnicaldevices.theinterestedreadermayeithertranslateourpresentatio
46、nintoasuitable beredsetting,orassumesomeotherremedy,suchasmakingacoherentchoiceofpullbacks.(forthesyntacticcategoryinsection3,suchpullbackscanbechosensimplyassubstitutions.) wenowproceedwiththeinterpretationofbrackettypes.aregularcategorychasstableregularepimonoimagefactorizations.everyarrowf:abcanb
47、efactoreduniquelyuptoisomorphismasaregularepifollowedbyamono af eeeeeebyyyyyy im(f) thefactorizationisobtainedbytakingthecoequalizerqofthekernelpair(1,2)off,asinthefollowingdiagram: aba1 2addddqddfbzzzzzzi im(f) thearrowi:im(f)bexistsandisuniquewithi q=fbecausefcoequalizesitsownkernelpair.itcanmoreo
48、verbeshownthatiisalwaysmonic. abrackettype atype atype isinterpretedastheimageof a: (,a),a=im( a)oooooooooo a aooooooo () 10 image factorizations in regular categories are stable under pullbacks, so they model a natural modal operator in dependent type theory. this unary type constructor a has turne
49、d up previously in a syntactic form as a way of erasing computational content, theregularepipartofthefactorizationisusedintheinterpretationoftermbracketing a:a a:a theinterpretationofaisthecomposition ()a(,a) (,a) itremainstointerpretthewhereterms.consider q:a,x:a b:b,x:a,y:a b=by/x:b bwherex=q:b th
50、evarioustermsandtypesoccurringaboveareinterpretedinthesliceover,asshowninthefollowingdiagram: (,x:a,y:a)x (,a)q()(,a)iiwiiwwiiwwiiwwiwbiiiw(bwherex=q)i (,a,b) byassumption,thearrowlabelledbcoequalizesthetwoprojections.theregularepi isthecoequalizerofthosetwoprojections,therefore bfactorsuniquelythro
51、ugh via.theinterpretationof(bwherex=q)isthecomposition q. theorem3.3theinterpretationofbrackettypesinregularcategoriesissound. proof.weomittheroutineproofofsoundnessoftheinterpretationofdependentsumsandequalitytypes,andconcentrateontheinterpretationofbrackettypes.weneedtoverifytheequalityrule,twocon
52、versionrules,thesubstitutionrulesandthecompatibilityrules. whentheequalityruleistranslatedintothesemantics,itstatesthatthearrowspandqinthefollowingdiagramareequal: ()(,a)eeeeeee a=eeeeeep () 11 image factorizations in regular categories are stable under pullbacks, so they model a natural modal opera
53、tor in dependent type theory. this unary type constructor a has turned up previously in a syntactic form as a way of erasing computational content, sincepandqaresectionsofthemono atheymustbeequal.next,considerthe-rule bwherex=a therelevantdiagramis jjjjjjj (bwherejbjjjj(,a,b)(,a)=ba/x.(,a)a()x=a) th
54、earrowistheuniquefactorizationofbthrough .byconstruction,thelower-lefttrianglecommutes,andtheright-handarrowisde nedtobethecomposition a,whichimpliesthattheupper-righttrianglecommutes.thisispreciselywhatthe-rulestates. toverifythe-rule bx/uwherex=q weconsiderthefollowingdiagram: (,x:a) =bq/u kkkkkkkkkbx/ukkkk(,u:a)bq (,a,b)(bx/uw()wherex=q) thearrowbx/uisthecompositionof andb.thereisauniquefactorizationofbx/uthrough ,andtheinterp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度科幻剧本研发与影视改编协议3篇
- 二零二四年度专业展会现场安全监管及应急响应合同3篇
- 二零二五年度互联网产品经理保密合同及市场策略保密协议3篇
- 2025年度影视基地场地租赁及影视制作支持合同4篇
- 二零二五年度电梯门套环保材料研发与应用合同4篇
- 二零二五年度水电工程验收及保修合同范本4篇
- 二零二五年度新能源储能项目股权合作与市场推广合同3篇
- 2025年度海洋资源开发与利用合作协议4篇
- 二零二五年度生态农业建设项目施工合同样本3篇
- 二零二五年度财务战略规划与实施顾问服务协议2篇
- 电网建设项目施工项目部环境保护和水土保持标准化管理手册(变电工程分册)
- 介入科围手术期护理
- 体检科运营可行性报告
- 青光眼术后护理课件
- 设立工程公司组建方案
- 设立项目管理公司组建方案
- 《物理因子治疗技术》期末考试复习题库(含答案)
- 退款协议书范本(通用版)docx
- 焊锡膏技术培训教材
- 江苏省泰州市姜堰区2023年七年级下学期数学期末复习试卷【含答案】
- 答案之书(解答之书)-电子版精选答案
评论
0/150
提交评论