

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、new solutions of relativistic wave equations in magnetic fie we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation,
2、which reduces eff 1 2 t c o 5 1 3 v 7 3 1 1 /0h t - p e :hv i x r anewsolutionsofrelativisticlongitudinalwaveequations elds.inmagnetic eldsandv.g.bagrov ,m.c.baldiotti ,d.m.gitman ,andi.v.shirokovinstitutodef sica,universidadedes aopaulo,c.p.66318,05315-970s aopaulo,sp,brasil(february1,2021)abstract
3、wedemonstratehowonecandescribeexplicitlythepresentarbitrarinessinsolutionsofrelativisticwaveequationsinexternalelectromagnetic eldsofspecialform.thisarbitrarinessisconnectedtotheexistenceofatransforma-tion,whichreducese ectivelythenumberofvariablesintheinitialequations.thenweusethecorrespondingrepre
4、sentationstoconstructnewsetsofex-actsolutions,ly,wepresentnewsetsofstationaryandnonstationarysolutionsinmagnetic eldandinsomesuperpositionsofelectricandmagnetic elds.i.introductionrelativisticwaveequations(diracandklein-gordon)provideabasisforrelativisticquantummechanicsandquantumelectrodynamicsofsp
5、inorandscalarparticles1.inrelativisticquantummechanics,solutionsofrelativisticwaveequationsarereferredtoasone-particlewavefunctionsoffermionsandbosonsinexternalelectromagnetic elds.inquantumelectrodynamics,suchsolutionsallowthedevelopmentoftheperturbationexpansionknownasthefurrypicture,whichincorpor
6、atestheinteractionwiththeexternal eldexactly, whiletreatingtheinteractionwiththequantizedelectromagnetic eldperturbatively2.thephysicallymostimportantexactsolutionsoftheklein-gordonandthediracequationsare:anelectroninacoulomb eld,auniformmagnetic eld,the eldofaplanewave,the eldofamagneticmonopole,th
7、e eldofaplanewavecombinedwithauniformmagneticandelectric eldsparalleltothedirectionofwavepropagation,crossed elds,andsome we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbi
8、trariness is connected to the existence of a transformation, which reduces eff simpleone-dimensionalelectric elds(foracompletereviewofsolutionsofrelativisticwaveequationssee3). considering,forexample,stationarysolutionsofrelativisticwaveequations,wecanseethatinthegeneralcase,thereexistdi erentsetsof
9、stationarysolutionsforoneandthesamehamiltonian.thepossibilitytogetdi erentsetsofstationarystatesre ectstheex-istenceofanarbitrarinessinthesolutionsoftheeigenvalueproblemforahamiltonian.consideringnonstationarysolutions,wealsoencounterthepossibilityofconstructingdif-ferentcompletesetsofsuchsolutions.
10、thereisnoregularmethodofdescribingsuchanarbitrarinessexplicitly.especiallyinthepresenceofanexternal eldtheproblemappearstobenontrivial. inthepresentarticlewedemonstratehowonecandescribeexplicitlythepresentarbi-trarinessinsolutionsoftherelativisticwaveequationsforsometypesofexternalelectro-magnetic e
11、lds,namely,foruniformmagnetic eldsandcombinationofthese eldswithsomeelectric elds.thisarbitrarinessisconnectedtotheexistenceofatransformation,whichreducese ectivelythenumberofvariablesintheinitialequations.thenweusethecorrespondingrepresentationstoconstructnewsetsofexactsolutions,whichmayhaveaphysic
12、alinterest.insect.iiweconsiderrelativisticwaveequationsinpureuniformmagnetic elds.herewederivearepresentationfortheexactsolutions,inwhichtheabovementionedarbitrarinessisdescribedexplicitlybyanarbitraryfunction.fromasuitablechoiceofthisfunction,wegetboththewell-knownsetofsolutionsandnewones.thissecti
13、oncontainsthemostcomplete(atthepresent)descriptionoftheproblemofauniformmagnetic eldinrelativisticquantummechanics.amongnewsetsofsolutionstherearebothstationary,gen-eralizedcoherentsolutionsandnonstationarysolutions.then,insect.iii,weconsidermorecomplicatedcon gurationsofexternalelectromagnetic elds
14、,namely,longitudinalelectro-magnetic elds.herewedescribeallthearbitrarinessinthesolutions,andonthisbasepresentvarioussetsofnewexactsolutions.insect.ivweinterprettheaboveresultsfromthepointofviewofthegeneraltheoryofdi erentialequations. ii.uniformmagneticfield a.arbitrarinessinsolutionsofrelativistic
15、waveequations. considerauniformmagnetic eldh=(0,0,h)directedalongthex3axis(h0).theelectromagneticpotentialsarechoseninthesymmetricgauge a0=a3=0,a1=1 2hx1.(2.1) wewritetheklein-gordonandthediracequationsintheform k=0,2h2k=p2 m2 0c,p=ihe we demonstrate how one can describe explicitly the present arbit
16、rariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff inthecaseoftheklein-gordonequation,theoperatorlz, lz=ihx 1 x 2,lz,p0=lz,p3=k,lz=0, 21 canbeincluded(togethe
17、rwithp0andp3)inthecompletesetofintegralsofmotion,whereasforthediracequationcase,theoperatorjz, jz=lz+h (2.3) dx1dx2=2cos , 2x2=y=ch0,dd ,x+iy= ei (x+iy+ x+i y)=(+i +2 ),2 11 12+=p2+ip1+hx ixa2=2h2 e i (x iy+ x i y)=( i +2 ),2 11(ip p)=a+=1212h2 d=h 1 p0+p3 03 2 i 21 h,21a1+i a+1 m.(2.9) we demonstra
18、te how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff theoperatorncommuteswithp0,p3,lz,plusitisanintegralofmo
19、tioninthecaseoftheklein-gordonequation.itsgeneralizationforthediracequationhastheformnd=n+1 2=x+k, 2x=+,2a1=+ ,2a2=+ , i m. onecanseethatthelatteroperatorsdonotcontainthevariable.noticethatbothoperatorslzandjzcontainvariables,.forexample, 222lz=2 2+ . 21 (2.15)(2.16) theintegrationoverkin (2.10)canb
20、ereplacedbyanintegrationover, eixy (x,y)= e i2x . (2.17) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, whic
21、h reduces eff besides,onecanwrite (,)= dxdy (x,y)(x,y)= ,d (,) = d (,).(2.18) theindependenceoftheoperators(2.15)onthevariablewillallowustoseparateexplicitlythefunctionalarbitrarinessinthesolutions(2.17),aswillbeseenbelow. b.stationarystates knownsetsofstationarysolutionsinauniformmagnetic eld(thatw
22、erefoundinthe rstworks48)areeigenfunctionsoftheoperatorsp0,p3,ninthescalarcaseandoftheoperatorsp0,p3,ndinthespinorcase.thusforscalarwavefunctionswehavetheconditions p0=hk0,p3=hk3,n=n,n=0,1,2,.,(2.19) andfordiracwavefunctionstheconditions p0=hk0,p3=hk3,nd= n 1 2x .(2.23) hereeqs.(2.19),(2.14)wereused
23、.un()arehermitfunctions; correspondingpolynomialshn()asun(x)=(2nn!theyarerelatedtothe 2exp( x2/2)hn(x)14.the function()isarbitrary.thefunctionsn(x,y)from(2.22)obeytherelations a1n=n+1a+n 1 n+1,n(x,y)= (n +1)0(x,y),(2.24) 3 0(x,y)= 2+ we demonstrate how one can describe explicitly the present arbitra
24、riness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff tn,k3(x,y)=(c1n 1(x,y),ic2n(x,y),c3n 1(x,y),ic4n(x,y).(2.26)thefunctionsn(x,y)arede nedbytherelations(2.17),(
25、2.23),whereastheconstantbispinorc(withtheelementsck)obeysanalgebraicsystemofequations ac=0,a=0k0+3k3 2n1 k33)v ,c+c=2k0(k0+m)v+v,(2.29) wherevisanarbitraryconstantbispinorandarepaulimatrices.wecanspecifyvselectingaspinintegralofmotion(see3).thestaten=0isaspecialcase.herewemustsetc1=c3=0,thatcorrespo
26、ndstothechoicevt=(0,c2),c2 meansthat3d= d.thus,forn=0,theelectronspincanonlypoint=to0.thethedirectionlatteroppositetothemagnetic eld. expressionsforn(x,y)inthesemi-momentumrepresentationcontainexplicitlyafunc-tionalarbitrariness,whichmeansthateveryenergylevelisin nitelydegenerated.letusdemandthatthe
27、scalarandspinorwavefunctionsbeeigenvectorsoftheoperatorslzandjzrespectively.accordingto(2.4)and(2.8)thatmeansthatthefunctionsn(x,y)havetoobeyanadditionalcondition a+2a2n(x,y)=sn(x,y),s=0,1,2,., lz=h(n s)=hl,l=n s,nl ,jz=h l 1 n s x iy 2x sn,s 1,a+2n,s= 2(x2+y2) =e we demonstrate how one can describe
28、 explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff belowwearegoingto ndnewsetsofsolutionsimposingcomplementaryconditionsdi erentf
29、rom(2.30).thisresultsinadi erentformforthefunction(). takingintoaccountthattheoperatorsa+2,a2areintegralsofmotion,wemayconstructstationarystates,whichareeigenvectorsofalinearcombinationa,oftheseoperators,2 a,=a2+a+22.(2.33) here,arearbitrarycomplexnumbers.onehastodistinguishherethreenonequivalentcas
30、es: if|2|2,thendonotexistanynormalizableeigenvectorsoftheoperator(2.33).wearenotgoingtoconsidersuchcase. if|2=|2,thena,is,infact,reducedtoahermitianoperator2 +a2=a2+a2,a+2=a2,=0,(2.34) whereisanarbitrarycomplexnumber. haveif|2|2,thenwithoutlossofgeneralitywecanassumethatoperatorsa,2theform a,2=a2+a+
31、2,| |=1,22 ,thena+,aarecreationandannihilationoperators,whicharerelatedtoa+222,a2byacanonicaltransformation +,a2= a,2 a2+,a+ a,2.2=a2 a,2,a+2 =1.(2.35)(2.36) considereigenvectorsoftheoperator(2.34),i.e.,az=z .this2n,z(x,y)=zn,z(x,y), equationresultsintheequationa2z()=zz()forthefunction().takinginto
32、account(2.13),onecan ndthatsolutionsofthelatterequationare z()= 2|( ) 1 2z z2(+ )| 2. thesesolutionsobeytheorthonormalityandcompletenessrelations z()z()(2.37)d=(z z), z()z()dz=( ).(2.38) theiroverlappinghastheform r,(z,z)= z()z()d=n1exp q2 q2=z 22|( ) z , z 2 2+ z .(2.39) we demonstrate how one can
33、describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff itde nesthemutualdecomposition z()= ,(z,z)dz.z()r(2.40) thecoordinater
34、epresentation(2.17)forthesolutionsunderconsiderationhastheform n,z(x,y)= 2 2 un(p1)expiq3, 4|2q3=i( )x+(+ )y(+ )x+i( )y 2z, we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this ar
35、bitrariness is connected to the existence of a transformation, which reduces eff ,s,z()= 2 2eq4us(p2),4| |2q4 2z( ) =2( )+22 theoverlapping, s,z()s,z()=( ),d2z=drezdimz.(2.47) ,;,rs(z,z),s= , s,z()s,z()d,(2.48) allowsusto ndmutualdecompositions ,s,z()= ,;,rs(z,z),ss,z(), s=0,s,z()= ,;,d2zrs(z,z),ss,
36、z().(2.49) unfortunately,theoverlapping(2.48)hasacomplicatedformviaa nitesumofhermitfunctions.insomeparticularcasesthissumcanbesimpli ed.forexample,if=,=,thentheoverlappingdoesnotdependon,andhastheform ,;,rs(z,z),s=rs,s(z,z)= z z2 exp 1 2q5=2expq5,z2( )+(z )2( )+2zz x iy z n s we demonstrate how one
37、 can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff 1n ,n,0,z(x,y)=,n,z(x,y)=( 1)n n,z(x,y)=(x+iy z)n (n+1)exp 2|z|2
38、z(x iy) 1 , s,n,s 1,z,a+2,n,s,z=z ,n,s,z+ 2 q2is,n(q) =( 1)nn z expx iy n s e i =(x iy)(x+iy z). forn=1theabovesetobeys(besides(2.24)therelations a2n,s,z=zn,s,z+ zn,s,z= (s+1) (s+1)(2.56) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equat
39、ions in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff n,s+k,z(x,y)= (s+k+1) d2z (k+s+1) k!n,s+k,z(x,y).(2.59) thatmeans,inparticular,that(2.56)isacompletesetsincetheset(2.31)iscomplete.selectingdi erentformsfo
40、rthefunction(),wecangetothersetsofstationarystatesforachargeinauniformmagnetic eld. c.nonstationarystates themostinterestingnonstationarysolutionsofrelativisticwaveequationsforachargeinauniformmagnetic eldarecoherentstates;forthe rsttimesuchsolutionswerepresentedin1013,seealso3.belowwepresentanewfam
41、ilyofnonstationarysolutions,whichincludestheabovecoherentstatesasaparticularcase. herewearegoingtouselight-conevariablesu0=x0 x3,u3=x0+x3,andthecorrespondingmomentumoperators 1 =ih p =002(p0+p3),(2.60) 0= / u0,where form 3= / u3.thentheklein-gordonoperatorcanbepresentedinthe 2 p ,k=4h 2p30 2n m 2(2.
42、61)whereasthediracequationreads(isadiracbispinor)4h 2 p= (p1,p2,0), p p30( )=2nd+m =(+)+( ), ( ), 2p3m( ),3(+)=(p)+h()=p,2p=13.(2.62)hereand3arediracmatrices3,andpprojectionoperators. ,p areinthecaseoftheuniformmagnetic eldunderconsideration,theoperatorsp30 integralsofmotion.thus,wewillconsidersolut
43、ionsthatareeigenvectorsofp3, =hp3 3 2u im 2 .(2.65) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which red
44、uces eff supposeeq.(2.63)holds,then( )canbepresentedintheform: ( )(x)=nexp i 2u0w(1 3)c(u0,x,y). (2.66) herecisanarbitraryconstantbispinor,andwisaunitarymatrix( 0isaconstantphase), w=cos i3sin,2=u0+ 0,w+w=i,(2.67) and(u0,x,y)isascalarfunction.thelatterfunctionobeystheequation(2.65).then,the(+)projec
45、tioncanbefoundfrom(2.62),(+)=(h) 1(p)+hm3( ). thus,bothinthescalarandspinorcaseswehavetosolvethesameequation(2.65). (u0,)obeystheinthesemi-momentumrepresentation,thecorrespondingfunction sameequation(2.65),where,however,onehastousetheexpression(2.14)fortheoperator 0 0n=a+1a1.therelationbetweenthefun
46、ctions(u,)and(u,)stillhastheform (2.17). letusintroducetheoperators +af,g1=fa1+ga1,f,g a+=f a+11+ga1,(2.68) wherethecomplexquantitiesfandgcandependonu0.theseoperatorsareintegralsofmotionwheneverf,gobeytheequations(bydotsabovearedenotedderivativeswithrespecttou0) if+f=0, itiseasyto nd f=f0expiu 0ig g
47、=0. (2.69)wheref0,g0aresomecomplexconstants.bearinginmindconsiderationsrelatedtothe operators(2.33),wearegoingtoconsidertwononequivalentcasesonly.the rstonecorrespondsto|f|2=|g|2orequivalentlyto|f0|2=|g0|2.inthiscasewecan,infact,onlyconsiderthehermitianoperator +a1=a1+a1, ,g=g0exp iu0,(2.70)=0eiu,00
48、=const.(2.71) thesecondcasecorrespondsto|f|2|g|2,andherewecansupposethat |f|2 |g|2=|f0|2 |g0|2=1,(2.72) withoutthelossofgenerality.inbothcasestheoperators(2.68)are,withinconstantcomplexfactors,creationandannihilationoperators. letusincludeoperators(2.71)and(2.34)(theyareintegralsofmotion)intothecomp
49、letesetofoperators.then ,a1z1,z2=z1z1,z2,a2z1,z2=z2z1,z2, zk=zk,k=1,2.(2.73) inthesemi-momentumrepresentationwe nd we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrarine
50、ss is connected to the existence of a transformation, which reduces eff wherefunctionsz1arede nedin(2.37).thecorrespondingcoordinaterepresentationreads ,0z(u,x,y)=,z12 u,=z1()z2(),0 (2.74) 2exp q6 nf,gn ;1,s;z1,z2,1 z 1f,gn,s;,z1,z2= sf,gn,s; ,1;z1,z2, a+f,ga+2, z 2 f,gn,s;,z1,z2= we demonstrate how
51、 one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff forn=s=0,wegetthecoordinaterepresentationforthesqueezedcohere
52、ntstatesintheform ;g;,0fz1,z2(u,x,y) ( 1)x+iy z1 z22m1=eis,n(p4), 2m1=(z1 z2)(x+iy) (z1 z2)(x iy)+z1z2 z1z2 2inu0, p4=|x+iy z1 z2|2,z1=z1exp( iu0),0;1,001n,s;z1,z2(u,x,y)n (2.80)= f2expq7, q7= solutionsfrom1013areparticularcasesof(2.81)forf0=1,g=0. calculatingmeanvaluesinthestates(2.78),weget1 (f g
53、)z1+(f g)z1.(2.82)p2= h2 herewehavetakenintoaccounttherelations(2.6),(2.36),(2.79),andtheorthogonalityofthestateswithrespecttotheindicesn,s.remembernowthatinclassicaltheorythe clclcorrespondingmomentap1,p2havethefollowingparametricrepresentation(withu0being theevolutionparameter,rradiusoftheclassicalorbit,andisgivenby(2.67)itiseasytoseethat(2.82)coincideswith(2.83)forz1=(/2)1/2r(f0e i 0+g0ei 0).cal- x2,we ndthattheyevolveasthecorrespondingculatingmeanvaluesofthecoordinates 2classicalquantitiesx1cl,x2cl(x1(0),x(0)arecoordinatesoftheorbitcen
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安徽省合肥四十二中中考物理一模试卷(含解析)
- 浙江省余杭区普通高中第二共同体2024-2025学年高考最后冲刺模拟(一)英语试题含解析
- 华南农业大学珠江学院《食品研发专题》2023-2024学年第二学期期末试卷
- 湖北省孝感市孝南区十校联谊2025年第二学期初三教学质量检测试题生物试题试卷含解析
- 山东省邹平县黄山中学2025年高三年级4月联考数学试题含解析
- 拉萨市堆龙德庆县2024-2025学年数学四年级第二学期期末学业质量监测试题含解析
- 辽宁地质工程职业学院《建筑给排水工程》2023-2024学年第二学期期末试卷
- 河南艺术职业学院《印度文化遗产赏析》2023-2024学年第一学期期末试卷
- 四川省遂宁市安居育才中学2024-2025学年初三5月考前适应性考试英语试题试卷含答案
- 周口理工职业学院《自然科学基础(4)》2023-2024学年第一学期期末试卷
- 保险精算师述职报告
- 2022浪潮英政服务器CS5260H2用户手册
- 【MOOC】交通运输法规-中南大学 中国大学慕课MOOC答案
- 《真希望你也喜欢自己》房琪-读书分享
- 四季之美课件77
- GB/T 16895.24-2024低压电气装置第7-710部分:特殊装置或场所的要求医疗场所
- 2023年辽宁省公务员录用考试《行测》真题及答案解析
- 航空安全员培训
- JJF(京) 63-2018 微差压表校准规范
- 煤矿安全风险分级管控与隐患排查治理双重预防机制建设指南
- 人员素质测评理论与方法
评论
0/150
提交评论