![New solutions of relativistic wave equations in magnetic fie_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-11/19/e4cfe6a8-6cb5-476f-a947-645dd98c9898/e4cfe6a8-6cb5-476f-a947-645dd98c98981.gif)
![New solutions of relativistic wave equations in magnetic fie_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-11/19/e4cfe6a8-6cb5-476f-a947-645dd98c9898/e4cfe6a8-6cb5-476f-a947-645dd98c98982.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、new solutions of relativistic wave equations in magnetic fie we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation,
2、which reduces eff 1 2 t c o 5 1 3 v 7 3 1 1 /0h t - p e :hv i x r anewsolutionsofrelativisticlongitudinalwaveequations elds.inmagnetic eldsandv.g.bagrov ,m.c.baldiotti ,d.m.gitman ,andi.v.shirokovinstitutodef sica,universidadedes aopaulo,c.p.66318,05315-970s aopaulo,sp,brasil(february1,2021)abstract
3、wedemonstratehowonecandescribeexplicitlythepresentarbitrarinessinsolutionsofrelativisticwaveequationsinexternalelectromagnetic eldsofspecialform.thisarbitrarinessisconnectedtotheexistenceofatransforma-tion,whichreducese ectivelythenumberofvariablesintheinitialequations.thenweusethecorrespondingrepre
4、sentationstoconstructnewsetsofex-actsolutions,ly,wepresentnewsetsofstationaryandnonstationarysolutionsinmagnetic eldandinsomesuperpositionsofelectricandmagnetic elds.i.introductionrelativisticwaveequations(diracandklein-gordon)provideabasisforrelativisticquantummechanicsandquantumelectrodynamicsofsp
5、inorandscalarparticles1.inrelativisticquantummechanics,solutionsofrelativisticwaveequationsarereferredtoasone-particlewavefunctionsoffermionsandbosonsinexternalelectromagnetic elds.inquantumelectrodynamics,suchsolutionsallowthedevelopmentoftheperturbationexpansionknownasthefurrypicture,whichincorpor
6、atestheinteractionwiththeexternal eldexactly, whiletreatingtheinteractionwiththequantizedelectromagnetic eldperturbatively2.thephysicallymostimportantexactsolutionsoftheklein-gordonandthediracequationsare:anelectroninacoulomb eld,auniformmagnetic eld,the eldofaplanewave,the eldofamagneticmonopole,th
7、e eldofaplanewavecombinedwithauniformmagneticandelectric eldsparalleltothedirectionofwavepropagation,crossed elds,andsome we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbi
8、trariness is connected to the existence of a transformation, which reduces eff simpleone-dimensionalelectric elds(foracompletereviewofsolutionsofrelativisticwaveequationssee3). considering,forexample,stationarysolutionsofrelativisticwaveequations,wecanseethatinthegeneralcase,thereexistdi erentsetsof
9、stationarysolutionsforoneandthesamehamiltonian.thepossibilitytogetdi erentsetsofstationarystatesre ectstheex-istenceofanarbitrarinessinthesolutionsoftheeigenvalueproblemforahamiltonian.consideringnonstationarysolutions,wealsoencounterthepossibilityofconstructingdif-ferentcompletesetsofsuchsolutions.
10、thereisnoregularmethodofdescribingsuchanarbitrarinessexplicitly.especiallyinthepresenceofanexternal eldtheproblemappearstobenontrivial. inthepresentarticlewedemonstratehowonecandescribeexplicitlythepresentarbi-trarinessinsolutionsoftherelativisticwaveequationsforsometypesofexternalelectro-magnetic e
11、lds,namely,foruniformmagnetic eldsandcombinationofthese eldswithsomeelectric elds.thisarbitrarinessisconnectedtotheexistenceofatransformation,whichreducese ectivelythenumberofvariablesintheinitialequations.thenweusethecorrespondingrepresentationstoconstructnewsetsofexactsolutions,whichmayhaveaphysic
12、alinterest.insect.iiweconsiderrelativisticwaveequationsinpureuniformmagnetic elds.herewederivearepresentationfortheexactsolutions,inwhichtheabovementionedarbitrarinessisdescribedexplicitlybyanarbitraryfunction.fromasuitablechoiceofthisfunction,wegetboththewell-knownsetofsolutionsandnewones.thissecti
13、oncontainsthemostcomplete(atthepresent)descriptionoftheproblemofauniformmagnetic eldinrelativisticquantummechanics.amongnewsetsofsolutionstherearebothstationary,gen-eralizedcoherentsolutionsandnonstationarysolutions.then,insect.iii,weconsidermorecomplicatedcon gurationsofexternalelectromagnetic elds
14、,namely,longitudinalelectro-magnetic elds.herewedescribeallthearbitrarinessinthesolutions,andonthisbasepresentvarioussetsofnewexactsolutions.insect.ivweinterprettheaboveresultsfromthepointofviewofthegeneraltheoryofdi erentialequations. ii.uniformmagneticfield a.arbitrarinessinsolutionsofrelativistic
15、waveequations. considerauniformmagnetic eldh=(0,0,h)directedalongthex3axis(h0).theelectromagneticpotentialsarechoseninthesymmetricgauge a0=a3=0,a1=1 2hx1.(2.1) wewritetheklein-gordonandthediracequationsintheform k=0,2h2k=p2 m2 0c,p=ihe we demonstrate how one can describe explicitly the present arbit
16、rariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff inthecaseoftheklein-gordonequation,theoperatorlz, lz=ihx 1 x 2,lz,p0=lz,p3=k,lz=0, 21 canbeincluded(togethe
17、rwithp0andp3)inthecompletesetofintegralsofmotion,whereasforthediracequationcase,theoperatorjz, jz=lz+h (2.3) dx1dx2=2cos , 2x2=y=ch0,dd ,x+iy= ei (x+iy+ x+i y)=(+i +2 ),2 11 12+=p2+ip1+hx ixa2=2h2 e i (x iy+ x i y)=( i +2 ),2 11(ip p)=a+=1212h2 d=h 1 p0+p3 03 2 i 21 h,21a1+i a+1 m.(2.9) we demonstra
18、te how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff theoperatorncommuteswithp0,p3,lz,plusitisanintegralofmo
19、tioninthecaseoftheklein-gordonequation.itsgeneralizationforthediracequationhastheformnd=n+1 2=x+k, 2x=+,2a1=+ ,2a2=+ , i m. onecanseethatthelatteroperatorsdonotcontainthevariable.noticethatbothoperatorslzandjzcontainvariables,.forexample, 222lz=2 2+ . 21 (2.15)(2.16) theintegrationoverkin (2.10)canb
20、ereplacedbyanintegrationover, eixy (x,y)= e i2x . (2.17) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, whic
21、h reduces eff besides,onecanwrite (,)= dxdy (x,y)(x,y)= ,d (,) = d (,).(2.18) theindependenceoftheoperators(2.15)onthevariablewillallowustoseparateexplicitlythefunctionalarbitrarinessinthesolutions(2.17),aswillbeseenbelow. b.stationarystates knownsetsofstationarysolutionsinauniformmagnetic eld(thatw
22、erefoundinthe rstworks48)areeigenfunctionsoftheoperatorsp0,p3,ninthescalarcaseandoftheoperatorsp0,p3,ndinthespinorcase.thusforscalarwavefunctionswehavetheconditions p0=hk0,p3=hk3,n=n,n=0,1,2,.,(2.19) andfordiracwavefunctionstheconditions p0=hk0,p3=hk3,nd= n 1 2x .(2.23) hereeqs.(2.19),(2.14)wereused
23、.un()arehermitfunctions; correspondingpolynomialshn()asun(x)=(2nn!theyarerelatedtothe 2exp( x2/2)hn(x)14.the function()isarbitrary.thefunctionsn(x,y)from(2.22)obeytherelations a1n=n+1a+n 1 n+1,n(x,y)= (n +1)0(x,y),(2.24) 3 0(x,y)= 2+ we demonstrate how one can describe explicitly the present arbitra
24、riness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff tn,k3(x,y)=(c1n 1(x,y),ic2n(x,y),c3n 1(x,y),ic4n(x,y).(2.26)thefunctionsn(x,y)arede nedbytherelations(2.17),(
25、2.23),whereastheconstantbispinorc(withtheelementsck)obeysanalgebraicsystemofequations ac=0,a=0k0+3k3 2n1 k33)v ,c+c=2k0(k0+m)v+v,(2.29) wherevisanarbitraryconstantbispinorandarepaulimatrices.wecanspecifyvselectingaspinintegralofmotion(see3).thestaten=0isaspecialcase.herewemustsetc1=c3=0,thatcorrespo
26、ndstothechoicevt=(0,c2),c2 meansthat3d= d.thus,forn=0,theelectronspincanonlypoint=to0.thethedirectionlatteroppositetothemagnetic eld. expressionsforn(x,y)inthesemi-momentumrepresentationcontainexplicitlyafunc-tionalarbitrariness,whichmeansthateveryenergylevelisin nitelydegenerated.letusdemandthatthe
27、scalarandspinorwavefunctionsbeeigenvectorsoftheoperatorslzandjzrespectively.accordingto(2.4)and(2.8)thatmeansthatthefunctionsn(x,y)havetoobeyanadditionalcondition a+2a2n(x,y)=sn(x,y),s=0,1,2,., lz=h(n s)=hl,l=n s,nl ,jz=h l 1 n s x iy 2x sn,s 1,a+2n,s= 2(x2+y2) =e we demonstrate how one can describe
28、 explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff belowwearegoingto ndnewsetsofsolutionsimposingcomplementaryconditionsdi erentf
29、rom(2.30).thisresultsinadi erentformforthefunction(). takingintoaccountthattheoperatorsa+2,a2areintegralsofmotion,wemayconstructstationarystates,whichareeigenvectorsofalinearcombinationa,oftheseoperators,2 a,=a2+a+22.(2.33) here,arearbitrarycomplexnumbers.onehastodistinguishherethreenonequivalentcas
30、es: if|2|2,thendonotexistanynormalizableeigenvectorsoftheoperator(2.33).wearenotgoingtoconsidersuchcase. if|2=|2,thena,is,infact,reducedtoahermitianoperator2 +a2=a2+a2,a+2=a2,=0,(2.34) whereisanarbitrarycomplexnumber. haveif|2|2,thenwithoutlossofgeneralitywecanassumethatoperatorsa,2theform a,2=a2+a+
31、2,| |=1,22 ,thena+,aarecreationandannihilationoperators,whicharerelatedtoa+222,a2byacanonicaltransformation +,a2= a,2 a2+,a+ a,2.2=a2 a,2,a+2 =1.(2.35)(2.36) considereigenvectorsoftheoperator(2.34),i.e.,az=z .this2n,z(x,y)=zn,z(x,y), equationresultsintheequationa2z()=zz()forthefunction().takinginto
32、account(2.13),onecan ndthatsolutionsofthelatterequationare z()= 2|( ) 1 2z z2(+ )| 2. thesesolutionsobeytheorthonormalityandcompletenessrelations z()z()(2.37)d=(z z), z()z()dz=( ).(2.38) theiroverlappinghastheform r,(z,z)= z()z()d=n1exp q2 q2=z 22|( ) z , z 2 2+ z .(2.39) we demonstrate how one can
33、describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff itde nesthemutualdecomposition z()= ,(z,z)dz.z()r(2.40) thecoordinater
34、epresentation(2.17)forthesolutionsunderconsiderationhastheform n,z(x,y)= 2 2 un(p1)expiq3, 4|2q3=i( )x+(+ )y(+ )x+i( )y 2z, we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this ar
35、bitrariness is connected to the existence of a transformation, which reduces eff ,s,z()= 2 2eq4us(p2),4| |2q4 2z( ) =2( )+22 theoverlapping, s,z()s,z()=( ),d2z=drezdimz.(2.47) ,;,rs(z,z),s= , s,z()s,z()d,(2.48) allowsusto ndmutualdecompositions ,s,z()= ,;,rs(z,z),ss,z(), s=0,s,z()= ,;,d2zrs(z,z),ss,
36、z().(2.49) unfortunately,theoverlapping(2.48)hasacomplicatedformviaa nitesumofhermitfunctions.insomeparticularcasesthissumcanbesimpli ed.forexample,if=,=,thentheoverlappingdoesnotdependon,andhastheform ,;,rs(z,z),s=rs,s(z,z)= z z2 exp 1 2q5=2expq5,z2( )+(z )2( )+2zz x iy z n s we demonstrate how one
37、 can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff 1n ,n,0,z(x,y)=,n,z(x,y)=( 1)n n,z(x,y)=(x+iy z)n (n+1)exp 2|z|2
38、z(x iy) 1 , s,n,s 1,z,a+2,n,s,z=z ,n,s,z+ 2 q2is,n(q) =( 1)nn z expx iy n s e i =(x iy)(x+iy z). forn=1theabovesetobeys(besides(2.24)therelations a2n,s,z=zn,s,z+ zn,s,z= (s+1) (s+1)(2.56) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equat
39、ions in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff n,s+k,z(x,y)= (s+k+1) d2z (k+s+1) k!n,s+k,z(x,y).(2.59) thatmeans,inparticular,that(2.56)isacompletesetsincetheset(2.31)iscomplete.selectingdi erentformsfo
40、rthefunction(),wecangetothersetsofstationarystatesforachargeinauniformmagnetic eld. c.nonstationarystates themostinterestingnonstationarysolutionsofrelativisticwaveequationsforachargeinauniformmagnetic eldarecoherentstates;forthe rsttimesuchsolutionswerepresentedin1013,seealso3.belowwepresentanewfam
41、ilyofnonstationarysolutions,whichincludestheabovecoherentstatesasaparticularcase. herewearegoingtouselight-conevariablesu0=x0 x3,u3=x0+x3,andthecorrespondingmomentumoperators 1 =ih p =002(p0+p3),(2.60) 0= / u0,where form 3= / u3.thentheklein-gordonoperatorcanbepresentedinthe 2 p ,k=4h 2p30 2n m 2(2.
42、61)whereasthediracequationreads(isadiracbispinor)4h 2 p= (p1,p2,0), p p30( )=2nd+m =(+)+( ), ( ), 2p3m( ),3(+)=(p)+h()=p,2p=13.(2.62)hereand3arediracmatrices3,andpprojectionoperators. ,p areinthecaseoftheuniformmagnetic eldunderconsideration,theoperatorsp30 integralsofmotion.thus,wewillconsidersolut
43、ionsthatareeigenvectorsofp3, =hp3 3 2u im 2 .(2.65) we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which red
44、uces eff supposeeq.(2.63)holds,then( )canbepresentedintheform: ( )(x)=nexp i 2u0w(1 3)c(u0,x,y). (2.66) herecisanarbitraryconstantbispinor,andwisaunitarymatrix( 0isaconstantphase), w=cos i3sin,2=u0+ 0,w+w=i,(2.67) and(u0,x,y)isascalarfunction.thelatterfunctionobeystheequation(2.65).then,the(+)projec
45、tioncanbefoundfrom(2.62),(+)=(h) 1(p)+hm3( ). thus,bothinthescalarandspinorcaseswehavetosolvethesameequation(2.65). (u0,)obeystheinthesemi-momentumrepresentation,thecorrespondingfunction sameequation(2.65),where,however,onehastousetheexpression(2.14)fortheoperator 0 0n=a+1a1.therelationbetweenthefun
46、ctions(u,)and(u,)stillhastheform (2.17). letusintroducetheoperators +af,g1=fa1+ga1,f,g a+=f a+11+ga1,(2.68) wherethecomplexquantitiesfandgcandependonu0.theseoperatorsareintegralsofmotionwheneverf,gobeytheequations(bydotsabovearedenotedderivativeswithrespecttou0) if+f=0, itiseasyto nd f=f0expiu 0ig g
47、=0. (2.69)wheref0,g0aresomecomplexconstants.bearinginmindconsiderationsrelatedtothe operators(2.33),wearegoingtoconsidertwononequivalentcasesonly.the rstonecorrespondsto|f|2=|g|2orequivalentlyto|f0|2=|g0|2.inthiscasewecan,infact,onlyconsiderthehermitianoperator +a1=a1+a1, ,g=g0exp iu0,(2.70)=0eiu,00
48、=const.(2.71) thesecondcasecorrespondsto|f|2|g|2,andherewecansupposethat |f|2 |g|2=|f0|2 |g0|2=1,(2.72) withoutthelossofgenerality.inbothcasestheoperators(2.68)are,withinconstantcomplexfactors,creationandannihilationoperators. letusincludeoperators(2.71)and(2.34)(theyareintegralsofmotion)intothecomp
49、letesetofoperators.then ,a1z1,z2=z1z1,z2,a2z1,z2=z2z1,z2, zk=zk,k=1,2.(2.73) inthesemi-momentumrepresentationwe nd we demonstrate how one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrarine
50、ss is connected to the existence of a transformation, which reduces eff wherefunctionsz1arede nedin(2.37).thecorrespondingcoordinaterepresentationreads ,0z(u,x,y)=,z12 u,=z1()z2(),0 (2.74) 2exp q6 nf,gn ;1,s;z1,z2,1 z 1f,gn,s;,z1,z2= sf,gn,s; ,1;z1,z2, a+f,ga+2, z 2 f,gn,s;,z1,z2= we demonstrate how
51、 one can describe explicitly the present arbitrariness in solutions of relativistic wave equations in external electromagnetic fields of special form. this arbitrariness is connected to the existence of a transformation, which reduces eff forn=s=0,wegetthecoordinaterepresentationforthesqueezedcohere
52、ntstatesintheform ;g;,0fz1,z2(u,x,y) ( 1)x+iy z1 z22m1=eis,n(p4), 2m1=(z1 z2)(x+iy) (z1 z2)(x iy)+z1z2 z1z2 2inu0, p4=|x+iy z1 z2|2,z1=z1exp( iu0),0;1,001n,s;z1,z2(u,x,y)n (2.80)= f2expq7, q7= solutionsfrom1013areparticularcasesof(2.81)forf0=1,g=0. calculatingmeanvaluesinthestates(2.78),weget1 (f g
53、)z1+(f g)z1.(2.82)p2= h2 herewehavetakenintoaccounttherelations(2.6),(2.36),(2.79),andtheorthogonalityofthestateswithrespecttotheindicesn,s.remembernowthatinclassicaltheorythe clclcorrespondingmomentap1,p2havethefollowingparametricrepresentation(withu0being theevolutionparameter,rradiusoftheclassicalorbit,andisgivenby(2.67)itiseasytoseethat(2.82)coincideswith(2.83)forz1=(/2)1/2r(f0e i 0+g0ei 0).cal- x2,we ndthattheyevolveasthecorrespondingculatingmeanvaluesofthecoordinates 2classicalquantitiesx1cl,x2cl(x1(0),x(0)arecoordinatesoftheorbitcen
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度离婚协议书范本修订与风险评估合同3篇
- 二零二五版停薪留职员工协议书编制与执行要点
- 二零二五年度天津协议离婚办理攻略:手续、费用及期限说明
- 二零二五年度交通事故赔偿协议范本:机动车损失评估与赔偿协议
- 二零二五年度高校教师科研合作与成果转化合同
- 二零二五年度汽车租赁抵押贷款服务合同
- 合同法修订趋势分析-深度研究
- 二零二五年度农业土地承包权转让与农业保险合作合同范本
- 2025-2030全球医药包装用铝箔行业调研及趋势分析报告
- 旅游服务海上运输合同样本
- 2025-2030年中国清真食品行业运行状况及投资发展前景预测报告
- 广东省茂名市电白区2024-2025学年七年级上学期期末质量监测生物学试卷(含答案)
- 《教育强国建设规划纲要(2024-2035年)》全文
- 山东省滨州市2024-2025学年高二上学期期末地理试题( 含答案)
- 2025年河南洛阳市孟津区引进研究生学历人才50人历年高频重点提升(共500题)附带答案详解
- 2025年度军人军事秘密保护保密协议与信息安全风险评估合同3篇
- 蛋鸡生产饲养养殖培训课件
- 数字化转型中的职业能力重构
- 运用PDCA降低住院患者跌倒-坠床发生率
- 2025届高中数学一轮复习专练:椭圆(含解析)
- 立春气象与生活影响模板
评论
0/150
提交评论