

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、exchange interaction and stability diagram of coupled quantu the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and
2、 exchange energy exchangeinteractionandstabilitydiagramofcoupledquantumarxiv:cond-mat/0607571v1 cond-mat.mes-hall 22 jul 2021dotsinmagnetic eldsl.-x.zhang,d.v.melnikov,andj.-p.leburtonbeckmaninstituteforadvancedsciencetechnologyanddepartmentofelectricalandcomputerengineering,universityofillinoisatur
3、bana-champaign,urbana,illinois61801(dated:february6,2021)abstractthechargestabilitydiagramfortwocoupledquantumdotscontaininguptotwoelectronsiscomputedinmagnetic elds.one-andtwo-particleschrodingerequationsaresolvedbyexactdiagonalizationtoobtainthechemicalpotentialsandexchangeenergyinthesesystems.bya
4、n-alyzingthechemicalpotentialsvariationwithexternalbiasesandmagnetic elds,itispossibletodistinguishbetweentheweakandstronginter-dotcouplings.thevariationofthechemicalpotentialcurvaturesandthedouble-triplepointseparationsinthestabilitydiagramscon rmstheinter-dotcouplingdecreasewithincreasingmagnetic
5、elds.thecomputedexchangeenergiesarealsofoundtobesigni cantlysmallerthanthevaluesestimatedfromthestabilitydiagram.pacsnumbers:,73.21.-b the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations
6、 are solved by exact diagonalization to obtain the chemical potentials and exchange energy coupledquantumdots(qds)areofparticularimportanceforspin-basedquantumcom-putationbecauseuniversalquantumlogicalgates(suchasacontrol-notgate)canberealizedviatheinteractionbetweentwoquantumbits(qubits),i.e.,thesp
7、insoftwoelec-trons,eachtrappedinonequantumdot.1insuchdevices,theinteractionbetweenthetwospinsisproportionaltotheexchangeenergyj,whichisequivalenttothesplittingbetweenthelowestsingletandtriplettwo-electronstates. whileextensivetheoreticalworkfocusesonthedependenceofjonthesystempara-menterssuchasthein
8、ter-dotseparation,thetunnelingbarrierbetweentheqds,andtheexternalmagnetic eld,2,3,4,5thechargestabilitydiagramofcoupledqds6hasbeenstudiedtoalesserextent.meanwhile,recentadvancesinexperimentaltechniqueshavemadeitpossibletostudycoupledqdsinthefew-electronregimewheneachqdcontainsonlyoneconductionelectr
9、on(see,e.g.,refs.6,7,8).inthiscasethestabilitydiagrambecomesapowerfultooltostudyinter-dotcouplingandelectronictransportthroughdoubleqdsys-tems.analysisofthestabilitydiagramanditsevolutioninmagnetic eldsallowsonetoestimatethevaluesoftheexchangeenergyaswasdemonstratedrecentlyinthecaseofthetwolaterally
10、coupledverticalqds.8 ingeneral,inthestabilitydiagramtheboundariesbetweendistinctstablechargestates,i.e.,betweenthestateswith xednumberofelectronsn1andn2ineachofthecoupleddots,arerepresentedasfunctionsofthetwocontrollinggatebiases,oneforeachdot.6theseequilibriumchargesaredeterminedfromtheconditiontha
11、tthechemicalpotentialoftheqdstructure(n1+n2)de nedas:6 (n1+n2)=eg(n1+n2) eg(n1+n2 1),(1) whereeg(n)isthegroundstateenergyofthen-electronstate,islessthanthatoftheleads(sourceanddrain). inthispaper,wenumericallycomputethestabilitydiagramincoupledqdswithn1+n22electronsinexternalmagnetic elds,andinvesti
12、gateitspropertiesfordi erentinter-dotcouplingstrengths.thehamiltonianforthecoupledsystemisgivenby h(r1,r2)=horb+hz,(2) horb=h(r1)+h(r2)+c(r1,r2) (3) the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedi
13、nger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy 1h(r)=2 ca)+v(r),(4) c(r1,r2)=e2/ |r1 r2|(5) hz=gb bsi(6) i here,m =0.067meistheelectrone ectivemass, =13.1isthedielectricconstant,g= 0.44istheg-factoringaas,bisthebohrmagnetonanda=1 the charge s
14、tability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy chemicalpotentialswithslightlylargerslopesthanshownwasfo
15、undforvariousmagnetic eldsaswell.10 swe rstanalyzethedependencesofthetotalenergieseg(1)andeg(2)foroneandtwo electronsonvlandvrshowninfig.2.weseethatintheone-electroncase(leftcolumn),thecurvatureofeg(1)intheregionwherevlandvrareneareachother(vlvr)islargerford=60nmthanford=50nmbecauseoftheweakercoupli
16、ngbetweentheqdsintheformercase.wealsonotethatforbothvaluesoftheinter-dotdistance,thecurvaturesoftheenergycontourplotsincreasealongthemaindiagonalsincethecouplingbetweenthedotsdecreasesasvl=vrgetslarger. however,whenthetwoelectronspopulatetheqdsystem,thesituationbecomesradicallydi erent:intheweakcoup
17、lingcase(d=60nm,bottomright),thetotalenergyofthetwoelectronsysteminthevlvrregionisalmostlinearlydependentonvl(vr),i.e.,thecurvatureisvanishinglysmall,whileford=50nm(topright)theenergycurvesclearlyexhibitanon-linearbehaviorwithnon-zerocurvatures.thelargeoverlapbetweentheelectronsinthestronginter-dotc
18、ouplingcase(d=50nm)isresponsibleforthesmoothnon-lineardependenceoftheenergyonvl(vr).however,intheweak-couplingcase(d=60nm),thetwoelectronsarewelllocalizedintheindividualqdsbycoulombrepulsionandthelargebarrierbetweenthedots,sothatthepotentialchangeinoneqdcausedbythevariationofvl(vr)doesnota ecttheele
19、ctronchargedistributionbutonlyactsasaconstantadditiontothetotalenergy.thisleadstoalineardependenceofthetotalenergyonvl(vr).12whenthedi erencebetweenvlandvrbecomessu cientlylargetoovercomethecoulombrepulsion,thetwoelectronsmoveintooneqd.thisisaccompaniedbyachangeintheslopeoftheenergycurveswhichbecome
20、eitherhorizontalorverticalasvl(orvr)nolongera ectsthetotalenergyandwhichcorrespondstothe(0,2)/(2,0)regionsonthestabilitydiagram(notshown).6weemphasizethattheobservedquasi-linearbehaviorofthetotalenergyeg(2)whenvlvrintheweakcouplingregime(d=60nm)isphysicallydi erentfromthesituationintwocoalesceddotsw
21、herebotheg(1)andeg(2)arealsostraightlinesperpendiculartothemaindiagonalinthevl vrplane.6thisisbecauseinthatcaseonedealswithasingleqdandchangingvl(vr)modi esthetotalenergyofthesystem. fig.3displaysthecontourplotsof(1)(lowerbranches)ands(2)(upperbranches)asfunctionsofvlandvratzeromagnetic eld.wechoose
22、constantvaluesof(1)= the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy s(2)= 18mevford=50nmand
23、(1)=s(2)= 16.5mevford=60nmasthereferencevaluesofthechemicalpotentialinthesource/drainoftheqddevice.11infig.3wecanrecognizefourregionscorrespondingtofourstablechargestateswithdi erentnumbersofelectronsineachdotthenumbersintheparenthesesineachregiongivethenumberofelectronsinthe(left,right)qdseparatedb
24、ythechemicalpotentialcontoursandthemaindiagonalvl=vr.attheturningpointoneachbranchalongthemaindiagonal,threestablechargestatescoincideintermsofthetotalenergyofthesystem.thedistancebetweentheturningpointsistheso-calleddouble-triplepoint(dtp)separation(alsocalledtheanti-crossingseparation).6,8fromfig.
25、3wealsoobservethatthedtpseparation vl= vr=5.00mevinthed=50nmcaseissigni cantlylargerthanthecorrespondingvalue vl= vr=2.93mevinthed=60nmcase.furthermore,thecurvatureofthebranchesaroundthedtpissmallerford=50nmthanford=60nm.accordingtothe“classical”theory,6asmallerdtpseparation(orequivalentlyalargercur
26、vatureofthechemicalpotentialcontourlines)indicatesaweakerinter-dotcouplingwhichisconsistentwithour ndings. fromthedataintablei,wenotethatford=50nm,thecurvature(magnitude)(2)ofthe(2)curveissmallerthanthecurvature(magnitude)(1)for(1),whileinthed=60nmcase(1)(2).thispeculiarbehaviorcanbeclari edbynoting
27、thatboth(1)and(2)aredeterminedbythedi erencesbetweenthecorrespondingcurvaturesofthetotalenergywhosebehaviorinthevoltageplaneisdiscussedabove.thisindicatesthatingeneral,allbeingequal,intheweak-couplingregimethecurvatureofthechemicalpotentialfortwoelectronsislargerthanthatoneforoneelectron,(2)(1),whil
28、einthestrongcouplingregime,theoppositerelationship(2)(1)holds. inthepresenceofthemagnetic eld,thecurvaturesofthechemicalpotentialcontoursalsoincreaseascanbeseeninfig.4(a)and(b)whereweagainplotthechemicalpotentialcon-toursfor(1),s(2)andt(2)atconstantreferencevaluesof(1)=s(2)=t(2)= 18( 16.5)mevford=50
29、(60)nmatb=0,3and6t.notetheorderofthecontoursfors(2)andt(2)atdi erentmagnetic elds.asthemagnetic eldincreases,thecontoursshiftfromthelowerleftcornertotheupperrightcornerbecausethesingle-particleeigenen-ergiesincrease.4inadditiontothecurvatureincrease,thedtpseparationbecomessmalleratlargermagnetic eld
30、forbothsingletandthelowesttripletstatesforthedetailedexpla-nationofthise ect,seethediscussiononfig.5(a).fromthechangesinthecurvatureand the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equation
31、s are solved by exact diagonalization to obtain the chemical potentials and exchange energy dtpseparation,oneconcludesthatthemagnetic eldindeedinducesaquantummechani-caldecouplingbetweenthetwodotsandresultsinmagneticlocalizationofelectronsineachdot.bycomparingthechemicalpotentialcurvesinfig.4(a)with
32、thecorrespondingonesinfig.4(b),weseethatinthelattercasethechemicalpotentialcontourshavemuchlargercurvaturesthanintheformercase(seetableifordetails)duetotheincreasedinter-dotdecouplingandforeachvalueofthemagnetic eldthedtpseparationford=60nmismorethan60%smallerthanford=50nm. fromtablei,itisalsoshownt
33、hatthecurvatures(1)and(2)progressivelyincreaseasthemagnetic eldbecomeslarger.thisisduetoenhancedlocalizationofelectronscausedbythemagnetic eld.themagneticlocalizationintheweakcouplingcasebecameprevalentatlower eldsthaninthestrongcouplingsituationseelowerinsetsoffig.5,whichismanifestedbyamorerapidinc
34、reaseinthecurvatureofchemicalpotentialcontours.figures5(a)and(b)showtheextracteddtpseparationalongvl(orvr,vl=vr)axisasafunctionofmagnetic eldsford=50nmand60nminter-dotseparations,respectively.ineachplotthedataareshownforthesingletandlowesttripletstates.notethatatb=0thedtpseparationforthesingletstate
35、issmallerthanthatforthelowesttripletstatebecausethesingletisthegroundstate,whileatlargerb elds,thelowesttripletstatebecomesthegroundstateandtheorderofthedtpseparationsisreversed.inboth(a)and(b),thedtpseparationforthelowesttripletstatedecreasesfasterwithb eldsthanthatforthesingletstate.thisisbecauset
36、hedtpseparationisproportionalto(2) (1)=eg(2) 2eg(1)fora xedvl=vronthemaindiagonalofthestabilitydiagram(seefigs.1and3).forthesingletstate,eg(2)doesnotchangewiththeb eldwhileeg(1)decreaseswiththeb eldduetothezeemane ect,thereforethezeemancontributionto(2) (1)increaseswiththeb eld.forthetripletstate,th
37、ezeemancontributionstoeg(2)and2eg(1)cancelout,and(2) (1)isnota ectedbytheb eld.thedecreaseofthedtpseparationinthemagnetic eldwasalsorecentlyobservedexperimentally.8theupper(lower)insetineach gureshowsthecorrespondingexchangeenergyjasafunctionofthemagnetic eldcalculatedbyeq.(8)with(without)thezeemane
38、 ect.inbothcases,thezeemane ectinducesalineardepenedenceofjonb.however,in(a)giventhestrongcouplingbetweenthedots,theorbitalcontributiontojdominatesatlowb eldsbeforebeingovercomebythezeemaninduceddecreaseathigher eld;in(b),jistotallydominatedbythezeemancontribution,whichdecreaseslinearlywiththeb pari
39、sonoftheb the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy elddependencesofthedtpseparationan
40、dexchangeenergyintheabsenceofthezeemane ectinfig.5showsthatthelattersaturatesatmuchlowervaluesofthemagnetic eldthantheformer.thisisbecausethedtpseparationisdeterminedbythecoulombinteractionbetweenelectronswhichdecreasesastheelectronsbecomelocalizedbythemagnetic eldinindividualdots(withintheheitler-l
41、ondonapproximation,thisdecreaseisproportionaltob 2,ref.13),whiletheexchangeenergyinabsenceofthezeemane ectapproacheszeromuchfasterthanthecoulombinteractionsinceitisproportionaltotheoverlapbetweentheindividualelectronwavefunctionsthatdecaysexponentiallyfastinstrongmagnetic elds.2,13 itisalsointeresti
42、ngtocomparetheexactvaluesoftheexchangeenergy(seetheinsetsinfig.5)withthoseextractedfromthestabilitydiagramsinmagnetic eldsusingthehubbardmodel.2,8accordingtothismodel,jest=4t2/(vintra vinter)where2tisthetunnel(symmetric-asymetric)splitting,vintraandvinteraretheintra-dotandinter-dotcoulombinteraction
43、s.fromthedatashowninfig.5,weestimatethevalueoftheinter-dotcoulombinteractionvinter3.4(2.0)mevford=50(60)nm,whichisgivenbythedtpseparation(forthelowesttripletstate)inthelimitoflargemagnetic elds.thesenumbersareingoodagreementwiththecorrespondingexpectationvalues c(r1,r2) ofthecoulombinteractionmatrix
44、(3.5and2.2mev,respectively)obtainedfromdirectcalculations,therebycon rmingelectronlocalizationandqdsdecoupling.sinceatzeromagnetic eld,thedtpseparationisequalto2t+vinter,weobtain2t50(60)1.6(0.7)mevwhichisconsistentwiththeenergydi erencesbetweenthetwolowestsingle-particlelevelsof1.9(0.4)mev.asvintra8
45、mevisgivenbytheelectronadditionenergyinoneqdwhichisthedistancebetweenthe”corners”ofthelinearregionwheresingleelectronre-localizationoccursfromonedottotheotherinthen=2energydiagram(seefig.2),theestimatedvaluesoftheexchangeenergybecomejest50(60)50(60)0.6(0.08)mev.thesenumbersareofthesameorderasthenume
46、ricallyexactvaluesof0.24(0.012)mev,buttheybothsigni cantlyoverestimatethecomputeddata,andtherefore,canonlybeusedasageneralguidelinetogaugethemagnitudeoftheexchangecouplingindoubleqds.theoverestimationisduetothedi erencebetweencoulombenergiesinthesingletandtripletstatesthatlowerstheexchangeenergy,2bu
47、twhichisnottakenintoaccountinthesimplehubbardmodel. insummary,wecomputedthestabilitydiagramformodeldoubleqdsystemspopulatedwithuptotwoelectronsinmagnetic eldsusingnumericallyexactdiagonalizationoftheone- the charge stability diagram for two coupled quantum dots containing up to two electrons is comp
48、uted in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy andtwo-electronhamiltonian.twointer-dotseparationsd=50and60nmcorrespondingtostrongandweakinter-dotcouplingwereconsidered.wefoundthatinthewea
49、k-couplingregimethecurvatureofthechemicalpotential(2)islargerthanthatoneof(1)whileinthestrong-couplingcasethesituationisreversed.hence,byanalyzingthechemicalpotentialvariationscausedbyexternalbiasesandmagnetic elds,itispossibletodistinguishbetweenstrongandweakinter-dotcoupling,evenifthecurvaturesare
50、ofthesameorderinbothcases.theevolutionofthestabilitydiagramsinmagnetic eldsconformstothegeneralideaofenhancedelectronlocalizationwithincreasing eldstrength.theexchangeenergiesextractedfromthestabilitydiagramsshowedthatthesevaluesaresigni cantlyoverestimatedwhencomparedwithnumericallyexactdata. thisw
51、orkissupportedbydarpaquistprogramthrougharograntdaad19-01-1-0659.theauthorsthankthematerialcomputationalcenterattheuniversityofillinoisthroughnsfgrantdmr99-76550.lxzthanksthecomputerscienceandengineeringfellowshipprogramattheuniversityofillinoisforsupport. 1 2 3d.lossandd.p.divincenzo,phys.rev.a57,1
52、20(1998).g.burkard,d.loss,andd.p.divincenzo,phys.rev.b59,2070(1999).x.huands.dassarma,phys.rev.a61,062301(2000);w.dybalskiandp.hawrylak,phys.rev.b72,205432(2021). 4 5 6a.harju,s.siljamaki,andr.m.nieminen,phys.rev.lett.88,226804(2021).b.szafran,f.m.peeters,ands.bednarek,phys.rev.b70,205318(2021).w.g.
53、vanderwiel,s.defranceschi,j.m.elzerman,t.fujisawa,s.tarucha,andl.p.kouwenhoven,rev.mod.phys.75,1(2021). 7h.qin,a.w.holleitner,k.eberl,andr.h.blick,phys.rev.b64,241302(2021);j.m.elzerman,r.hanson,j.s.geidanus,l.h.w.vanbeveren,s.defranceschi,l.m.k.vandersypen,s.tarucha,andl.p.kouwenhoven,phys.rev.b67,
54、161308(r)(2021);t.hayashi,t.fujisawa,h.d.cheong,y.h.jeong,andy.hirayama,phys.rev.lett.91,226804(2021);f.ancilotto,d.g.austing,m.barranco,r.mayol,k.muraki,m.pi,s.sasaki,ands.tarucha,phys.rev.b67,205311(2021);j.r.petta,a.c.johnson,j.m.taylor,ird,a.yacoby,m.d.lukin,c.m.marcus,m.p.hanson,anda.c.gossard,
55、science309, the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy 2180(2021). 8 9 10 11t.hatano,m.
56、stopa,ands.tarucha,science309,268(2021).d.v.melnikovandj.-p.leburton,phys.rev.b73,085320(2021).l.-x.zhang,d.v.melnikov,andj.-p.leburton(unpublished).thevaluesofthechemicalpotentialsatwhichthecontourplotsaredrawnarechosentofacilitatedatarepresentation.fortheinvestigatedmagnetic elds,therelativechange
57、ofthecurvatureofaspeci cchemicalpotentialandthedtpseparationislessthan5%fordi erentreferencevalues. 12thesameconsiderationisobviouslyvalidforthetripletstatesaswell,albeitwithalargerquasilinearregion. 13d.v.melnikovandj.-p.leburton(unpublished). the charge stability diagram for two coupled quantum do
58、ts containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy figures v mevx nm mev-10 mev-15-20 -25 vl=vr mev fig.1:(coloronline)(a)thecon nementpotentialford=50nm(red)andd=60nm(blue)atvl=vr=25mev.chemicalpotentials(1)(solid)ands(2)(dashed)vs.vl=vrfor(b)d=50nmand(c)d=60nm.inbothofthemthehorizontallineindicatesthevaluesofthechemicalpotentialatwhichthecontoursinfig.3aredrawn. the charge stability diagram for two
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准员工合同协议书
- 二级经销商合作合同
- Unit 10 Lending a Helping hand 第二课时Exploring the Topic(含答案)仁爱版2024七下英语日清限时练
- 2025年03月国家奥林匹克体育中心等3家单位拟聘用人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 山西青年职业学院《人际交流与沟通》2023-2024学年第二学期期末试卷
- 大连装备制造职业技术学院《大学生劳动就业法律问题解读》2023-2024学年第二学期期末试卷
- 山西省忻州实验中学2025届高考语文试题金榜冲刺卷(三)含解析
- 家具工厂导购培训课件
- 五四青年节节日介绍
- 2025年度电力系统水电表安装工程合同
- 2025中考数学复习专题:八类最值问题汇-总(瓜豆隐圆胡不归阿氏圆将军饮马逆等线费马点构造二次函数求最值)(原卷版)
- 网约配送员培训课件
- 外研版(2025新版)七年级下册英语Unit 2 学情调研测试卷(含答案)
- 《货币的前世今生》课件
- 河北省职业院校技能大赛(高职)体育活动设计与实施赛项参考试题库(含答案)
- 2022-2023(2) 大学英语2学习通超星期末考试答案章节答案2024年
- 外研版英语(三起)五年级下册全册教案
- 《建筑工程设计文件编制深度规定》(2022年版)
- 保险专业代理机构投资人基本情况登记表(自然人股东)
- 病例报告表(CRF)模板
- 江西省2023年初中学业水平考试语文试题卷含答案解析
评论
0/150
提交评论