Exchange interaction and stability diagram of coupled quantu_第1页
Exchange interaction and stability diagram of coupled quantu_第2页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、exchange interaction and stability diagram of coupled quantu the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and

2、 exchange energy exchangeinteractionandstabilitydiagramofcoupledquantumarxiv:cond-mat/0607571v1 cond-mat.mes-hall 22 jul 2021dotsinmagnetic eldsl.-x.zhang,d.v.melnikov,andj.-p.leburtonbeckmaninstituteforadvancedsciencetechnologyanddepartmentofelectricalandcomputerengineering,universityofillinoisatur

3、bana-champaign,urbana,illinois61801(dated:february6,2021)abstractthechargestabilitydiagramfortwocoupledquantumdotscontaininguptotwoelectronsiscomputedinmagnetic elds.one-andtwo-particleschrodingerequationsaresolvedbyexactdiagonalizationtoobtainthechemicalpotentialsandexchangeenergyinthesesystems.bya

4、n-alyzingthechemicalpotentialsvariationwithexternalbiasesandmagnetic elds,itispossibletodistinguishbetweentheweakandstronginter-dotcouplings.thevariationofthechemicalpotentialcurvaturesandthedouble-triplepointseparationsinthestabilitydiagramscon rmstheinter-dotcouplingdecreasewithincreasingmagnetic

5、elds.thecomputedexchangeenergiesarealsofoundtobesigni cantlysmallerthanthevaluesestimatedfromthestabilitydiagram.pacsnumbers:,73.21.-b the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations

6、 are solved by exact diagonalization to obtain the chemical potentials and exchange energy coupledquantumdots(qds)areofparticularimportanceforspin-basedquantumcom-putationbecauseuniversalquantumlogicalgates(suchasacontrol-notgate)canberealizedviatheinteractionbetweentwoquantumbits(qubits),i.e.,thesp

7、insoftwoelec-trons,eachtrappedinonequantumdot.1insuchdevices,theinteractionbetweenthetwospinsisproportionaltotheexchangeenergyj,whichisequivalenttothesplittingbetweenthelowestsingletandtriplettwo-electronstates. whileextensivetheoreticalworkfocusesonthedependenceofjonthesystempara-menterssuchasthein

8、ter-dotseparation,thetunnelingbarrierbetweentheqds,andtheexternalmagnetic eld,2,3,4,5thechargestabilitydiagramofcoupledqds6hasbeenstudiedtoalesserextent.meanwhile,recentadvancesinexperimentaltechniqueshavemadeitpossibletostudycoupledqdsinthefew-electronregimewheneachqdcontainsonlyoneconductionelectr

9、on(see,e.g.,refs.6,7,8).inthiscasethestabilitydiagrambecomesapowerfultooltostudyinter-dotcouplingandelectronictransportthroughdoubleqdsys-tems.analysisofthestabilitydiagramanditsevolutioninmagnetic eldsallowsonetoestimatethevaluesoftheexchangeenergyaswasdemonstratedrecentlyinthecaseofthetwolaterally

10、coupledverticalqds.8 ingeneral,inthestabilitydiagramtheboundariesbetweendistinctstablechargestates,i.e.,betweenthestateswith xednumberofelectronsn1andn2ineachofthecoupleddots,arerepresentedasfunctionsofthetwocontrollinggatebiases,oneforeachdot.6theseequilibriumchargesaredeterminedfromtheconditiontha

11、tthechemicalpotentialoftheqdstructure(n1+n2)de nedas:6 (n1+n2)=eg(n1+n2) eg(n1+n2 1),(1) whereeg(n)isthegroundstateenergyofthen-electronstate,islessthanthatoftheleads(sourceanddrain). inthispaper,wenumericallycomputethestabilitydiagramincoupledqdswithn1+n22electronsinexternalmagnetic elds,andinvesti

12、gateitspropertiesfordi erentinter-dotcouplingstrengths.thehamiltonianforthecoupledsystemisgivenby h(r1,r2)=horb+hz,(2) horb=h(r1)+h(r2)+c(r1,r2) (3) the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedi

13、nger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy 1h(r)=2 ca)+v(r),(4) c(r1,r2)=e2/ |r1 r2|(5) hz=gb bsi(6) i here,m =0.067meistheelectrone ectivemass, =13.1isthedielectricconstant,g= 0.44istheg-factoringaas,bisthebohrmagnetonanda=1 the charge s

14、tability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy chemicalpotentialswithslightlylargerslopesthanshownwasfo

15、undforvariousmagnetic eldsaswell.10 swe rstanalyzethedependencesofthetotalenergieseg(1)andeg(2)foroneandtwo electronsonvlandvrshowninfig.2.weseethatintheone-electroncase(leftcolumn),thecurvatureofeg(1)intheregionwherevlandvrareneareachother(vlvr)islargerford=60nmthanford=50nmbecauseoftheweakercoupli

16、ngbetweentheqdsintheformercase.wealsonotethatforbothvaluesoftheinter-dotdistance,thecurvaturesoftheenergycontourplotsincreasealongthemaindiagonalsincethecouplingbetweenthedotsdecreasesasvl=vrgetslarger. however,whenthetwoelectronspopulatetheqdsystem,thesituationbecomesradicallydi erent:intheweakcoup

17、lingcase(d=60nm,bottomright),thetotalenergyofthetwoelectronsysteminthevlvrregionisalmostlinearlydependentonvl(vr),i.e.,thecurvatureisvanishinglysmall,whileford=50nm(topright)theenergycurvesclearlyexhibitanon-linearbehaviorwithnon-zerocurvatures.thelargeoverlapbetweentheelectronsinthestronginter-dotc

18、ouplingcase(d=50nm)isresponsibleforthesmoothnon-lineardependenceoftheenergyonvl(vr).however,intheweak-couplingcase(d=60nm),thetwoelectronsarewelllocalizedintheindividualqdsbycoulombrepulsionandthelargebarrierbetweenthedots,sothatthepotentialchangeinoneqdcausedbythevariationofvl(vr)doesnota ecttheele

19、ctronchargedistributionbutonlyactsasaconstantadditiontothetotalenergy.thisleadstoalineardependenceofthetotalenergyonvl(vr).12whenthedi erencebetweenvlandvrbecomessu cientlylargetoovercomethecoulombrepulsion,thetwoelectronsmoveintooneqd.thisisaccompaniedbyachangeintheslopeoftheenergycurveswhichbecome

20、eitherhorizontalorverticalasvl(orvr)nolongera ectsthetotalenergyandwhichcorrespondstothe(0,2)/(2,0)regionsonthestabilitydiagram(notshown).6weemphasizethattheobservedquasi-linearbehaviorofthetotalenergyeg(2)whenvlvrintheweakcouplingregime(d=60nm)isphysicallydi erentfromthesituationintwocoalesceddotsw

21、herebotheg(1)andeg(2)arealsostraightlinesperpendiculartothemaindiagonalinthevl vrplane.6thisisbecauseinthatcaseonedealswithasingleqdandchangingvl(vr)modi esthetotalenergyofthesystem. fig.3displaysthecontourplotsof(1)(lowerbranches)ands(2)(upperbranches)asfunctionsofvlandvratzeromagnetic eld.wechoose

22、constantvaluesof(1)= the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy s(2)= 18mevford=50nmand

23、(1)=s(2)= 16.5mevford=60nmasthereferencevaluesofthechemicalpotentialinthesource/drainoftheqddevice.11infig.3wecanrecognizefourregionscorrespondingtofourstablechargestateswithdi erentnumbersofelectronsineachdotthenumbersintheparenthesesineachregiongivethenumberofelectronsinthe(left,right)qdseparatedb

24、ythechemicalpotentialcontoursandthemaindiagonalvl=vr.attheturningpointoneachbranchalongthemaindiagonal,threestablechargestatescoincideintermsofthetotalenergyofthesystem.thedistancebetweentheturningpointsistheso-calleddouble-triplepoint(dtp)separation(alsocalledtheanti-crossingseparation).6,8fromfig.

25、3wealsoobservethatthedtpseparation vl= vr=5.00mevinthed=50nmcaseissigni cantlylargerthanthecorrespondingvalue vl= vr=2.93mevinthed=60nmcase.furthermore,thecurvatureofthebranchesaroundthedtpissmallerford=50nmthanford=60nm.accordingtothe“classical”theory,6asmallerdtpseparation(orequivalentlyalargercur

26、vatureofthechemicalpotentialcontourlines)indicatesaweakerinter-dotcouplingwhichisconsistentwithour ndings. fromthedataintablei,wenotethatford=50nm,thecurvature(magnitude)(2)ofthe(2)curveissmallerthanthecurvature(magnitude)(1)for(1),whileinthed=60nmcase(1)(2).thispeculiarbehaviorcanbeclari edbynoting

27、thatboth(1)and(2)aredeterminedbythedi erencesbetweenthecorrespondingcurvaturesofthetotalenergywhosebehaviorinthevoltageplaneisdiscussedabove.thisindicatesthatingeneral,allbeingequal,intheweak-couplingregimethecurvatureofthechemicalpotentialfortwoelectronsislargerthanthatoneforoneelectron,(2)(1),whil

28、einthestrongcouplingregime,theoppositerelationship(2)(1)holds. inthepresenceofthemagnetic eld,thecurvaturesofthechemicalpotentialcontoursalsoincreaseascanbeseeninfig.4(a)and(b)whereweagainplotthechemicalpotentialcon-toursfor(1),s(2)andt(2)atconstantreferencevaluesof(1)=s(2)=t(2)= 18( 16.5)mevford=50

29、(60)nmatb=0,3and6t.notetheorderofthecontoursfors(2)andt(2)atdi erentmagnetic elds.asthemagnetic eldincreases,thecontoursshiftfromthelowerleftcornertotheupperrightcornerbecausethesingle-particleeigenen-ergiesincrease.4inadditiontothecurvatureincrease,thedtpseparationbecomessmalleratlargermagnetic eld

30、forbothsingletandthelowesttripletstatesforthedetailedexpla-nationofthise ect,seethediscussiononfig.5(a).fromthechangesinthecurvatureand the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equation

31、s are solved by exact diagonalization to obtain the chemical potentials and exchange energy dtpseparation,oneconcludesthatthemagnetic eldindeedinducesaquantummechani-caldecouplingbetweenthetwodotsandresultsinmagneticlocalizationofelectronsineachdot.bycomparingthechemicalpotentialcurvesinfig.4(a)with

32、thecorrespondingonesinfig.4(b),weseethatinthelattercasethechemicalpotentialcontourshavemuchlargercurvaturesthanintheformercase(seetableifordetails)duetotheincreasedinter-dotdecouplingandforeachvalueofthemagnetic eldthedtpseparationford=60nmismorethan60%smallerthanford=50nm. fromtablei,itisalsoshownt

33、hatthecurvatures(1)and(2)progressivelyincreaseasthemagnetic eldbecomeslarger.thisisduetoenhancedlocalizationofelectronscausedbythemagnetic eld.themagneticlocalizationintheweakcouplingcasebecameprevalentatlower eldsthaninthestrongcouplingsituationseelowerinsetsoffig.5,whichismanifestedbyamorerapidinc

34、reaseinthecurvatureofchemicalpotentialcontours.figures5(a)and(b)showtheextracteddtpseparationalongvl(orvr,vl=vr)axisasafunctionofmagnetic eldsford=50nmand60nminter-dotseparations,respectively.ineachplotthedataareshownforthesingletandlowesttripletstates.notethatatb=0thedtpseparationforthesingletstate

35、issmallerthanthatforthelowesttripletstatebecausethesingletisthegroundstate,whileatlargerb elds,thelowesttripletstatebecomesthegroundstateandtheorderofthedtpseparationsisreversed.inboth(a)and(b),thedtpseparationforthelowesttripletstatedecreasesfasterwithb eldsthanthatforthesingletstate.thisisbecauset

36、hedtpseparationisproportionalto(2) (1)=eg(2) 2eg(1)fora xedvl=vronthemaindiagonalofthestabilitydiagram(seefigs.1and3).forthesingletstate,eg(2)doesnotchangewiththeb eldwhileeg(1)decreaseswiththeb eldduetothezeemane ect,thereforethezeemancontributionto(2) (1)increaseswiththeb eld.forthetripletstate,th

37、ezeemancontributionstoeg(2)and2eg(1)cancelout,and(2) (1)isnota ectedbytheb eld.thedecreaseofthedtpseparationinthemagnetic eldwasalsorecentlyobservedexperimentally.8theupper(lower)insetineach gureshowsthecorrespondingexchangeenergyjasafunctionofthemagnetic eldcalculatedbyeq.(8)with(without)thezeemane

38、 ect.inbothcases,thezeemane ectinducesalineardepenedenceofjonb.however,in(a)giventhestrongcouplingbetweenthedots,theorbitalcontributiontojdominatesatlowb eldsbeforebeingovercomebythezeemaninduceddecreaseathigher eld;in(b),jistotallydominatedbythezeemancontribution,whichdecreaseslinearlywiththeb pari

39、sonoftheb the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy elddependencesofthedtpseparationan

40、dexchangeenergyintheabsenceofthezeemane ectinfig.5showsthatthelattersaturatesatmuchlowervaluesofthemagnetic eldthantheformer.thisisbecausethedtpseparationisdeterminedbythecoulombinteractionbetweenelectronswhichdecreasesastheelectronsbecomelocalizedbythemagnetic eldinindividualdots(withintheheitler-l

41、ondonapproximation,thisdecreaseisproportionaltob 2,ref.13),whiletheexchangeenergyinabsenceofthezeemane ectapproacheszeromuchfasterthanthecoulombinteractionsinceitisproportionaltotheoverlapbetweentheindividualelectronwavefunctionsthatdecaysexponentiallyfastinstrongmagnetic elds.2,13 itisalsointeresti

42、ngtocomparetheexactvaluesoftheexchangeenergy(seetheinsetsinfig.5)withthoseextractedfromthestabilitydiagramsinmagnetic eldsusingthehubbardmodel.2,8accordingtothismodel,jest=4t2/(vintra vinter)where2tisthetunnel(symmetric-asymetric)splitting,vintraandvinteraretheintra-dotandinter-dotcoulombinteraction

43、s.fromthedatashowninfig.5,weestimatethevalueoftheinter-dotcoulombinteractionvinter3.4(2.0)mevford=50(60)nm,whichisgivenbythedtpseparation(forthelowesttripletstate)inthelimitoflargemagnetic elds.thesenumbersareingoodagreementwiththecorrespondingexpectationvalues c(r1,r2) ofthecoulombinteractionmatrix

44、(3.5and2.2mev,respectively)obtainedfromdirectcalculations,therebycon rmingelectronlocalizationandqdsdecoupling.sinceatzeromagnetic eld,thedtpseparationisequalto2t+vinter,weobtain2t50(60)1.6(0.7)mevwhichisconsistentwiththeenergydi erencesbetweenthetwolowestsingle-particlelevelsof1.9(0.4)mev.asvintra8

45、mevisgivenbytheelectronadditionenergyinoneqdwhichisthedistancebetweenthe”corners”ofthelinearregionwheresingleelectronre-localizationoccursfromonedottotheotherinthen=2energydiagram(seefig.2),theestimatedvaluesoftheexchangeenergybecomejest50(60)50(60)0.6(0.08)mev.thesenumbersareofthesameorderasthenume

46、ricallyexactvaluesof0.24(0.012)mev,buttheybothsigni cantlyoverestimatethecomputeddata,andtherefore,canonlybeusedasageneralguidelinetogaugethemagnitudeoftheexchangecouplingindoubleqds.theoverestimationisduetothedi erencebetweencoulombenergiesinthesingletandtripletstatesthatlowerstheexchangeenergy,2bu

47、twhichisnottakenintoaccountinthesimplehubbardmodel. insummary,wecomputedthestabilitydiagramformodeldoubleqdsystemspopulatedwithuptotwoelectronsinmagnetic eldsusingnumericallyexactdiagonalizationoftheone- the charge stability diagram for two coupled quantum dots containing up to two electrons is comp

48、uted in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy andtwo-electronhamiltonian.twointer-dotseparationsd=50and60nmcorrespondingtostrongandweakinter-dotcouplingwereconsidered.wefoundthatinthewea

49、k-couplingregimethecurvatureofthechemicalpotential(2)islargerthanthatoneof(1)whileinthestrong-couplingcasethesituationisreversed.hence,byanalyzingthechemicalpotentialvariationscausedbyexternalbiasesandmagnetic elds,itispossibletodistinguishbetweenstrongandweakinter-dotcoupling,evenifthecurvaturesare

50、ofthesameorderinbothcases.theevolutionofthestabilitydiagramsinmagnetic eldsconformstothegeneralideaofenhancedelectronlocalizationwithincreasing eldstrength.theexchangeenergiesextractedfromthestabilitydiagramsshowedthatthesevaluesaresigni cantlyoverestimatedwhencomparedwithnumericallyexactdata. thisw

51、orkissupportedbydarpaquistprogramthrougharograntdaad19-01-1-0659.theauthorsthankthematerialcomputationalcenterattheuniversityofillinoisthroughnsfgrantdmr99-76550.lxzthanksthecomputerscienceandengineeringfellowshipprogramattheuniversityofillinoisforsupport. 1 2 3d.lossandd.p.divincenzo,phys.rev.a57,1

52、20(1998).g.burkard,d.loss,andd.p.divincenzo,phys.rev.b59,2070(1999).x.huands.dassarma,phys.rev.a61,062301(2000);w.dybalskiandp.hawrylak,phys.rev.b72,205432(2021). 4 5 6a.harju,s.siljamaki,andr.m.nieminen,phys.rev.lett.88,226804(2021).b.szafran,f.m.peeters,ands.bednarek,phys.rev.b70,205318(2021).w.g.

53、vanderwiel,s.defranceschi,j.m.elzerman,t.fujisawa,s.tarucha,andl.p.kouwenhoven,rev.mod.phys.75,1(2021). 7h.qin,a.w.holleitner,k.eberl,andr.h.blick,phys.rev.b64,241302(2021);j.m.elzerman,r.hanson,j.s.geidanus,l.h.w.vanbeveren,s.defranceschi,l.m.k.vandersypen,s.tarucha,andl.p.kouwenhoven,phys.rev.b67,

54、161308(r)(2021);t.hayashi,t.fujisawa,h.d.cheong,y.h.jeong,andy.hirayama,phys.rev.lett.91,226804(2021);f.ancilotto,d.g.austing,m.barranco,r.mayol,k.muraki,m.pi,s.sasaki,ands.tarucha,phys.rev.b67,205311(2021);j.r.petta,a.c.johnson,j.m.taylor,ird,a.yacoby,m.d.lukin,c.m.marcus,m.p.hanson,anda.c.gossard,

55、science309, the charge stability diagram for two coupled quantum dots containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy 2180(2021). 8 9 10 11t.hatano,m.

56、stopa,ands.tarucha,science309,268(2021).d.v.melnikovandj.-p.leburton,phys.rev.b73,085320(2021).l.-x.zhang,d.v.melnikov,andj.-p.leburton(unpublished).thevaluesofthechemicalpotentialsatwhichthecontourplotsaredrawnarechosentofacilitatedatarepresentation.fortheinvestigatedmagnetic elds,therelativechange

57、ofthecurvatureofaspeci cchemicalpotentialandthedtpseparationislessthan5%fordi erentreferencevalues. 12thesameconsiderationisobviouslyvalidforthetripletstatesaswell,albeitwithalargerquasilinearregion. 13d.v.melnikovandj.-p.leburton(unpublished). the charge stability diagram for two coupled quantum do

58、ts containing up to two electrons is computed in magnetic fields. one- and two-particle schroedinger equations are solved by exact diagonalization to obtain the chemical potentials and exchange energy figures v mevx nm mev-10 mev-15-20 -25 vl=vr mev fig.1:(coloronline)(a)thecon nementpotentialford=50nm(red)andd=60nm(blue)atvl=vr=25mev.chemicalpotentials(1)(solid)ands(2)(dashed)vs.vl=vrfor(b)d=50nmand(c)d=60nm.inbothofthemthehorizontallineindicatesthevaluesofthechemicalpotentialatwhichthecontoursinfig.3aredrawn. the charge stability diagram for two

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论