版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 平面向量重难点突破1.向量加法的运算及其几何意义。2.对向量加法定义的理解。3.向量的减法运算及其几何意义。4.对向量减法定义的理解。5.实数与向量积的意义。6.实数与向量积的运算律。7.两个向量共线的等价条件及其运用。8.对向量共线的等价条件的理解运用。每课一记一、求若干个向量的和的模(或最值)的问题通常按下列步骤进行:(1)寻找或构造平行四边形,找出所求向量的关系式;(2)用已知长度的向量表示待求向量的模,有时还要利用模的重要性质。二、1. 向量的加法定义向量加法的定义:如图3,已知非零向量a.b,在平面内任取一点a,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b=+=。求两个
2、向量和的运算,叫做向量的加法。2. 向量加法的法则:(1)向量加法的三角形法则在定义中所给出的求象量和的方法就是向量加法的三角形法则。运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量。零位移的合成可以看作向量加法三角形法则的物理模型。(2)平行四边形法则向量加法的平行四边形法则如图4,以同一点o为起点的两个已知向量a、b为邻边作平行四边形,则以o为起点的对角线就是a与b的和。我们把这种作两个向量和的方法叫做向量加法的平行四边形法则。3. 向量a,b的加法也满足交换律和结合律:对于零向量与任一向量,我们规定a+
3、0=0+a=a。两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段。当a,b不共线时,|a+b|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|)。其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|。一般地,我们有|a+b|a|+|b|。如图5,作=a,=b,以ab.ad为邻边作abcd,则=b,=a。因为=+=a+b,=+=b+a
4、,所以a+b=b+a。如图6,因为=+=(+)+=(a+b)+c,=+=+(+)=a+(b+c),所以(a+b)+c=a+(b+c)。综上所述,向量的加法满足交换律和结合律。 特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法。三、用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题。四、向量也有减法运算。由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量。于是-(-a)=a。我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0。所以,如果a、b是互为相反的
5、向量,那么a=-b,b=-a,a+b=0。1. 平行四边形法则图1如图1,设向量=b,=a,则=-b,由向量减法的定义,知=a+(-b)=a-b。又b+=a,所以=a-b。由此,我们得到a-b的作图方法。图22. 三角形法则如图2,已知a、b,在平面内任取一点o,作=a,=b,则=a-b,即a-b可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义。(1)定义向量减法运算之前,应先引进相反向量。与数x的相反数是-x类似,我们规定,与a长度相等,方向相反的量,叫做a的相反向量,记作-a。(2)向量减法的定义。我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量。规定
6、:零向量的相反向量是零向量。(3)向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现。五、我们规定实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作a,它的长度与方向规定如下:(1)|a|=|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反。由(1)可知,=0时,a=0。根据实数与向量的积的定义,我们可以验证下面的运算律。实数与向量的积的运算律设、为实数,那么(1)(a)=()a;(2)(+)a=a+a;(3)(a+b)=a+b.特别地,我们有(-)a=-(a)=(-a),(a-b)=a-b。向量共线的等价条
7、件是:如果a(a0)与b共线,那么有且只有一个实数,使b=a。共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等。数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|·|a|确定。它的几何意义是把向量a沿a的方向或a的反方向放大或缩小。向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形。向量的加、减、数乘运算统称为向量的线性运算。对于任意向量a、b,以及任意实数、,恒
8、有(a±b)=a±b。经典例题例1 化简:(1)+(2)+(3)+解:(1)+=+=(2)+=+=(+)+=+=0(3)+ =+=+=+=+=0解析:要善于运用向量的加法的运算法则及运算律来求和向量。例2 若=a+b,=a-b当a.b满足什么条件时,a+b与a-b垂直?当a.b满足什么条件时,|a+b|=|a-b|?当a.b满足什么条件时,a+b平分a与b所夹的角?a+b与a-b可能是相等向量吗?解析:如图6,用向量构建平行四边形,其中向量、恰为平行四边形的对角线。由平行四边形法则,得=a+b,=-=a-b。由此问题就可转换为:当边ab、ad满足什么条件时,对角线互相垂直?(|a|=|b|)当边ab、ad满足什么条件时,对角线相等?(a.b互相垂直)当边ab、a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 痛经课件流程教学课件
- 手机原理课件教学课件
- 护士课件英语教学课件
- 公司机密保密协议
- 2024年市场营销与协作合同
- 2024年城市供水管道铺设工程承包合同
- 2024可再生能源发电并网服务合同
- 2024年婚姻外遇协议书
- 2024年《夏令营老师与营员心理辅导协议》心理辅导内容与保密原则
- 2024年企业间产品生产与销售合同
- 公司员工劳保用品发放标准和管理办法
- 诗词大会训练题库十二宫格
- 困难职工帮扶救助申请表
- 机械设计课程设计说明书 11机电本 刘伟华
- 问卷1:匹兹堡睡眠质量指数量表(PSQI)
- 大黄具有抗菌作用
- 高速铁路桥涵工程桥上救援疏散通道施工方案
- 《企业水平衡测试通则》
- 《演讲的肢体语言》PPT课件
- 研究一亿有多大ppt课件
- 企业经营状况调查问卷
评论
0/150
提交评论