基于MKPCA的间歇过程故障检测终_第1页
基于MKPCA的间歇过程故障检测终_第2页
基于MKPCA的间歇过程故障检测终_第3页
基于MKPCA的间歇过程故障检测终_第4页
基于MKPCA的间歇过程故障检测终_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基于MKPCA的间歇过程故障检测终 作者: 日期:2 个人收集整理 勿做商业用途基于多向核主元分析的啤酒发酵过程故障诊断模型摘要:针对主元分析故障诊断模型在非线性时变过程中应用的局限性,基于间歇过程的周期性特点,将核变换理论引入非线性空间的数据特征提取中,提出了一种改进的多向核主元分析故障诊断模型,有效地解决了过程数据的非线性问题,保证数据信息抽取的完整性。通过与其他方法的对比实验,结果表明所提出的方法对缓慢时变的间歇过程具有良好的实时性和准确性。关键词:间歇过程 故障检测 多向核主元分析 1 引言间歇过程是批次生产的重复过程,广泛应用于生物制药、化工原料、食品等行业,其具有生产过程重复性高、

2、动态特性变化快、建模困难等特点,这导致传统的故障诊断方法难以得到较好的应用效果1。主元分析(principal component analysis, PCA)是多元统计过程监测(multivariate statistical process monitoring, MSPM)的重要方法之一,但是PCA在过程建模时假定过程是线性的,这导致在具有强非线性生产过程的在线监测中存在误报率过高的现象2.近年来针对间歇过程提出的多向主元分析(MPCA)方法得到了较多的研究,然而MPCA实质上仍是一种线性化建模方法,对复杂的非线性过程在线监控的可靠性和实时性往往也难以保证3。针对非线性过程监测的建模问题

3、,Scholkopf等人将核函数理论引入到统计过程监控中,将主元分析(PCA)方法推广到代表非线性领域的高维特征空间,据此发展的KPCA模型可以从数据样本中提取出非线性特征,与PCA算法相比,该方法表现出更优的监测性能4。本文针对间歇过程特点,将核函数理论应用于多向主元分析中,提出一种改进的多向核主元分析(MKPCA)过程故障监测算法,并通过啤酒发酵过程的故障检测实验对算法性能进行了验证。个人收集整理,勿做商业用途本文为互联网收集,请勿用作商业用途2 核主元分析(KPCA) 核主元分析通过非线性映射将输入集合映射到一个高维特征空间,使数据具有更好的可分性,再对高维空间的映射数据进行PCA处理,

4、得到非线性主元.KPCA不直接计算特征向量,而是将其转化为求核矩阵的特征值和特征向量,避免了在特征空间求特征向量,而数据在特征向量上的投影转换为求核函数的线性组合,大大简化了计算量5。首先通过非线性映射函数:,将输入空间,k= 1, 2, , M映射到特征空间F:,k= 1, 2, ., M中,然后在该特征空间中对式(1)的协方差矩阵进行线性主元分析。 (1)在特征空间中计算主元,可通过求解式(2)中的特征值和特征向量得到: (2)将每个样本与式(2)作内积,可得式(3)。 (3)因为式(2)的所有解均在张成的子空间内,所以存在系数使得式(4)成立。 (4)对式(2)、(3)和(4)进行合并,

5、得式(5). (5)取作为核函数,可得到式(6). (6)式中,其特征向量所对应的特征值为 ,为了提取主元特征,将投影到上可得到式(7)。 , (7)式(7)称为KPCA的第k个主元。3多向核主元分析故障诊断模型对于间歇过程其数据集比连续过程数据集多一维“批量”元素,每批数据都可以看作一个二维数据阵,多批数据则构成了三维数据阵,其中I为批次数目,J为变量数目,K为采样点数。将数据按批次方向展开为,X的每一行均表示一个批次数据,如图1示。 图1 MKPCA建模三维数据矩阵展开后,数据处理和分析过程等同于KPCA方法6。建模步骤如下: (1) 对于数据集按批次方向展开成二维数据阵,并对其按式(8)

6、进行标准化。 (8)式中:x(j)的样本均值,S(j)-x(j)的样本标准差。(2) 计算核矩阵K,记其元素为,其中: (9)(3) 在特征空间中,根据式(10)和(11)对核矩阵进行标定得到。 (10) (11)其中:。(4) 对核矩阵进行特征值分解,并且使得满足式(12)。 (12)(5) 对于每一个正常批次的数据x,根据式(7)提取其非线性主元。(6) 按式(13)和(14)构建监控统计量和SPE. (13) (14)(7) 按式(15)和(16)确定统计量的置信限. (15)其中:n为样本个数,m为主元个数,是检验水平为、自由度为m,n-1时的F分布临界值. (16)其中:为建模所用数

7、据的协方差矩阵的特征值,是当检验水平为时的正态分布临界值,M是全部主元个数,m为主元模型中的主元个数.In this:is used in modeling of the data covariance matrix eigenvalue, is when the test level is normal distribution critical values, M is the total number of principal components, m as the number of principal components in the PCA model。运用多向核主元法对间歇过

8、程进行故障检测的步骤如下:Using multiway kernel principal component method for fault detection of batch process,its steps are as follows:当对批次进行在线监测时,仅可知自批次开始时刻到监测时刻的采样数据。然而,监测过程的测试数据应为完整的批次数据。因此,需要对自监测时刻至批次结束时刻的数据进行估计。针对此问题已经提出了多种方法,本文采用各变量的均值来代替其估计值。When the on-line monitoring of batch, Only known, the sampling

9、 data since batch monitoring time to Monitoring time. However, test data of Monitor process shall be the complete batch data。 Therefore, need to be estimate data since monitored the moment to the end of batch moment。 The data since monitored the moment to the end of batch moment need to be estimated

10、。 To solve this problem, a variety of methods have been proposed, in this paper, using the mean of each variable to replace the estimates.(1) 在第k个采样时刻,新的反应批次数据为,展开处理采集到的数据,得到展开后的数据矩阵,对此矩阵依据式(8)进行标准化。(1) In the first k sampling time, The new reaction batch data is, processing sampled data get the unf

11、olded data matrix , to standardize the matrix based on this type (8) .(2) 估计新批次未反应完时刻的数据,补足第一步标准化后的数据矩阵,得到,作为完整的新批次数据.(2) Estimation of the new batch did not react time data, supplying the first step of the standardized data matrix, getting as a new integrity batch data.(3) 根据式(9)计算测试数据相应的核向量。(3) Ac

12、cording to equation (9) calculation the test data corresponding kernel vector (4) 根据式(17)对核向量作标准化处理得到.(4) To standardize kernel vector according to the type (17) getting (17)其中:K和在训练时得到,.Among them: K and obtained during training, (5) 根据式(18)提取非线性主元。(5) According to equation (18) extract nonlinear p

13、rincipal component. (18)(6) 按式(13)和(14)分别计算测试数据的和SPE统计量,并判断是否超出了各自的置信限。如果出现超出其置信限的情况,则说明过程中出现了故障。(6) According to formula (13) and (14) respectively to calculate the test data of theand SPE statistics, and determine whether it beyond the respective confidence limits. If there is a condition that bey

14、ond its confidence limits, then it appeared failure in the process。4 实验研究实验采用微型啤酒生产装置,测试数据来自发酵过程监控数据。根据生产运行中各变量的活跃程度和对生产状态的影响,选择温度、压力、液位、糖度、PH值和酒精度6个过程监测变量,这些变量反应了酵母菌菌体生长和发酵产物的合成状况.过程周期15天,每1小时采样1次,每批次采样360次。实验选取12个正常批次的数据建模。由于每一批次数据(为采样次数)的反应时间不同,因此,在将转换成之后,对多于2160列的直接截取到2160列,对不足2160列的批次补零,然后将矩阵排列

15、成形式,进行标准化处理,核函数采用径向基核函数,按93%的累计贡献率提取主成分.其中,MPCA算法的主元数目为2;而MKPCA算法的主元数目为4。可以看出,MKPCA算法所选的主元数目高于MPCA算法所选的主元数目,这是由于前者从高维特征空间中提取主元,而后者从输入空间中提取主元.4。The experimental studyThis experiment used device for miniature beer production, testing data from the fermentation process control data. According to the ac

16、tive degree of each variable in the production function and the influence on the production status, choosing the temperature, pressure, liquid level, sugar degree, PH value and alcohol degree, six process monitoring variables, these variables has been synthesized by the reaction of yeast cell growth

17、 and the fermentation products. 15 days as a process cycle, sampling 1 times every 1 hours, each batches samples 360 times. The experiment selected 12 normal batches of data modeling。 Because each batch of data (is the number of sampling) of different reaction time, Therefore, after convertingto , d

18、irecting interception of more than 2160 to 2160, to less than 2160 batches of zero padding, then the matrix is arranged in the form of , standard treatment, kernel function using rbf kernel function, According to 93 of the contribution rate to extract principal component。 Among them, principal compo

19、nent number of the MPCA algorithm is 2; The principal component number of MKPCA algorithm is 4. It is shown that principal component number selected in MKPCA algorithm is higher than that selected in MPCA algorithm。 This is due to the former from high dimensional feature space to extract the princip

20、al component, and the latter from the input space to extract the principal component.个人收集整理,勿做商业用途文档为个人收集整理,来源于网络 Figure 4 PCA statistics monitoring chart Figure 4 PCA SPE statistics monitoring chart Figure 4 MPCA statistics monitoring chart Figure 5 MPCA SPE statistics monitoring chart Figure 4 MKP

21、CA statistics monitoring chart Figure 4 MKPCA SPE statistics monitoring chart对啤酒发酵过程进行在线监测,在317-360采样时刻引入压力传感器故障,对测试数据分别采用PCA算法、MPCA算法和MKPCA算法进行在线监测.PCA的和SPE监测结果如图2,3所示。MPCA的和SPE监测结果如图4,5所示。MKPCA的和SPE监测结果如图6,7所示。The online monitoring of the beer fermentation process, The pressure sensor fault was in

22、troduced in 317-360 sampling time, PCA algorithm, MPCA algorithm and MKPCA algorithm were used for the online monitoring of beer fermentation process. The monitoring results of statistics and SPE statistics about PCA were shown in Figure 2, 3. The monitoring results of statistics and SPE statistics

23、about MPCA were shown in Figure 4, 5. The monitoring results of statistics and SPE statistics about MKPCA were shown in Figure 6, 7.个人收集整理,勿做商业用途个人收集整理,勿做商业用途实验结果分析:图1中PCA的统计量在故障时刻不能检测出压力传感器故障的存在,并且在第12和34采样时刻还存在着故障误报现象,图2中PCA的SPE统计量在317360采样时刻能够及时的检测出故障。由于统计量没有检测出过程故障而SPE统计量检测出了过程故障,所以PCA算法不能实现对啤酒发

24、酵过程的监测;从图3、4中可以看出,当采用MPCA算法在线监测时,图3的统计量在317351采样时刻并没有检测出过程故障,而在352-360采样时刻检测出了过程故障,所以MPCA算法的统计量应用在啤酒发酵过程时存在检测滞后的现象,即不能及时检测出故障。图4的SPE统计量在317360采样时刻能够及时的检测出了过程故障。同理,MPCA算法也不能及时准确的实现对啤酒发酵过程的在线监测;从图5、6中可以看出,通过引入核函数并结合MPCA算法复合而成的MKPCA算法的统计量和SPE统计量都能及时准确的检测出过程故障,而且不存在误报现象。因此采用MKPCA算法用于啤酒发酵过程的在线监测较PCA算法和MP

25、CA算法可靠。Analysis of experimental results: The pressure sensor fault can not be detected in the fault time from the statistics of PCA in figure 1,and there are fault misreporting phenomenon in the 12 and 34 sampling time. The pressure sensor fault can be detected in the 317360 sampling time from the S

26、PE statistics of PCA in figure 2 in time. Because the pressure sensor fault cant be detected from the statistics and the pressure sensor fault can be detected from the SPE statistics。 So PCA algorithm can't be used for the online monitoring of beer fermentation process。 As can be seen from the f

27、igure 3, 4, When using MPCA algorithm online monitoring, Figure 3,the statistics in 317351 the sampling time didnt detect process faults , however, the process faults were monitored in 352-360 sampling times, therefore, the application of the statistics of MPCA algorithm for the online monitoring of

28、 beer fermentation process exist the phenomenon of hysteresis. That can't detect the fault in time. Figure 4, SPE statistics in 317-360 sampling time can detected the process fault timely。 In the same way, MPCA algorithm can't timely and accurately realize the online monitoring of the beer f

29、ermentation process; In the figure 5and 6, by introducing kernel function and combining the MPCA algorithm of composite MKPCA T statistic and SPE statistics of the algorithm can accurately and timely detect process faults, and there is no false positives。 Above all, Using MKPCA algorithm is better t

30、han PCA algorithm and MPCA algorithm文档为个人收集整理,来源于网络文档为个人收集整理,来源于网络通过实验结果可知,引入非线性核函数能够充分提取过程中存在的非线性信息,有效计算出高维特征空间中的主元。与PCA和MPCA算法相比,MKPCA算法表现出更好的监测性能,更适于对非线性间歇过程进行在线监测。Through the experimental results we can know that by introducing the nonlinear kernel function can fully extract the nonlinear inform

31、ation which existed in the process, principal component in the high dimensional feature space can be calculated effectively. Compared with PCA and MPCA algorithm, MKPCA algorithm shows better monitoring performance, more suitable for online monitoring of nonlinear batch process。5 结论本文针对间歇发酵过程缓慢时变和非线

32、性等特点,利用核理论方法对MPCA算法进行了改进,提出了适用的多向核主元分析故障诊断算法。通过引入非线性核函数,能够充分提取过程中存在的非线性信息,有效计算出高维特征空间中的主元,并将研究结果应用于啤酒发酵过程监测。通过与PCA算法、MPCA算法进行对比实验表明所提出的模型可以有效处理间歇过程批次间存在的非线性属性,获取过程变量间的非线性关系,提高了故障诊断的及时性和准确性.5 ConclusionThis article based on the intermittent fermentation process slow time-varying, nonlinear and other

33、characteristics, using of kernel theory method improved the MPCA algorithm, it puts forward the suitable multiway kernel principal component analysis algorithm for fault diagnosis。 By introducing nonlinear kernel function, to fully extract the nonlinear information which exist in the process. Effect

34、ively calculate the principal component in the high dimensional feature space, and the research results can be applied to beer fermentation process monitoring. Through with the PCA algorithm and the MPCA algorithm comparative experiments ,it show that the existence of the nonlinear property where am

35、ong batch process batch can be effectively treated by the programs model what have been proposed, obtaining the nonlinear relationship among the process variables, Improving the timeliness and accuracy of fault diagnosis。文档为个人收集整理,来源于网络个人收集整理,勿做商业用途参考文献1 C. Zhang, Y。 Li, Study on the faultdetection method in batch process based on statistical pattern analysis, Yi Qi Yi Biao Xue Bao/Chinese Journal of

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论