深基坑支护结构PPT课件_第1页
深基坑支护结构PPT课件_第2页
深基坑支护结构PPT课件_第3页
深基坑支护结构PPT课件_第4页
深基坑支护结构PPT课件_第5页
已阅读5页,还剩92页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 采用深基坑随着基础埋深加大给施工带来很多困难,尤其在城市建筑物密集地区,施工场地的狭小,邻近建筑物、道路和管线纵横交错,多数情况下不能放坡开挖,需要采用支护结构,这就是本章所要研究的问题。第1页/共97页应力圆与土的抗剪强度 CBO113Ocfctg第2页/共97页 支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。第3页/共97页第一节 支护结构的选型 支护结构包括挡墙和支撑(或拉锚)两部分。 档墙或支撑中任何一部分的选型不当或产生破坏(包括变形过大),

2、都会导致整个支护结构的失败。第4页/共97页 支护结构的型式 放坡开挖 悬臂式支护结构 内撑式支护结构 拉锚式支护结构 土钉墙支护结构 环梁护壁支护结构 其它形式支护结构第5页/共97页一. 挡墙的选型(一) 钢板桩 1.槽钢钢板桩 2. 热轧锁口钢板桩(二) 钢筋混凝土板桩(三) 钻孔灌注桩挡墙(四) H型钢支柱(或钢筋混凝土桩支柱)(五) 地下连续墙(六) 深层搅拌水泥土桩挡墙(七) 旋喷桩帷幕墙第6页/共97页 1.槽钢钢板桩 由槽钢并排或正反扣搭接组成。 槽钢长68m,多用于深度不超过4m的基坑。 顶部宜设一道支撑或拉锚。 (一) 钢板桩第7页/共97页2 热轧锁口钢板桩 其形式有U型

3、、Z型、一字型、H型和组合型。 U型 Z型 一字型第8页/共97页 该板桩截面带企口,有一定的挡水作用,顶部设圈梁,用后不再拔除,永留地基土中。适于36m基坑,但应用较少。 (二)钢筋混凝土板桩第9页/共97页 常用6001000mm,是支护结构中应用最多的一种。宜形成排桩挡墙,顶部浇筑钢筋混凝土圈梁。但施工难以做到相切,挡水效果差。(三) 钻孔灌注桩挡墙第10页/共97页 该类支护结构适用于土质较好、地下水位较低的地区。型钢或支柱按一定间距打入,支柱间设木挡板或其它挡土设施。 (四)H型钢支柱(钢筋混凝土桩支 柱)、木挡板支护墙第11页/共97页(五)地下连续墙 地下连续墙已是目前深基坑的主

4、要支护结构之一。在地下结构层数多的深基坑的施工非常有利。地下连续墙常是采用“逆筑法”的支护结构的首选。 天津市的华联商厦、紫金花园、鸿吉大厦、津汇广场等很多工程均采用地下连续墙方法施工。第12页/共97页 深层搅拌水泥土桩挡墙是用特制的进入土深层的深层搅拌机将喷出的水泥浆固化剂与地基土进行原位强制搅拌制成水泥土桩,相互搭接,硬化后即形成具有一定强度的壁状挡墙,既可挡土又可形成隔水帷幕。 ( 六) 深层搅拌水泥土桩挡墙第13页/共97页第14页/共97页第15页/共97页 旋喷桩帷幕墙是钻孔后,将钻杆从地基土深处逐渐上提,同时利用插入钻杆端部的旋转喷嘴,将水泥浆固化剂喷入地基土中,形成水泥土桩,

5、桩体相连形成帷幕墙。 旋喷桩帷幕墙可用作支护结构挡墙,也可用于挡水。( 七) 旋喷桩帷幕墙第16页/共97页 当基坑深度较大,悬臂挡墙的强度和变形不能满足要求时,需增设支撑系统。 支撑系统有 基坑内支撑 基坑外拉锚(顶部拉锚土层锚杆拉锚) 常用的有 钢结构支撑 钢筋混凝土支撑二. 支撑(拉锚)的选型第17页/共97页1 钢管支撑 对撑 (一) 钢结构支撑第18页/共97页1 钢管支撑 角撑(一) 钢结构支撑第19页/共97页钢管支撑示意图钢管支撑示意图第20页/共97页(一) 钢结构支撑2 型钢支撑 型钢支撑主要采用H型钢,用螺栓连接,为工具式钢支撑,现场组装方便,可重复使用。第21页/共97

6、页 有角撑、对撑、桁架式支撑,还有圆形、拱形和椭圆形等形状的支撑。圆形支撑(二) 钢筋混凝土支撑第22页/共97页第二节 支护结构计算一. 支护结构的破坏形式和计算内容 支护结构可分为两类: 重力式支护结构 非重力式支护结构 重力式包括深层搅拌水泥土桩挡墙 旋喷桩帷幕墙 非重力式包括钢板桩、钢筋混凝土预制桩、钻孔灌注桩挡墙、地下连续墙等。第23页/共97页 包括 强度破坏 稳定性破坏。 强度破坏(非重力式) 1 拉锚破坏或支撑压曲 地面荷载增加过多、(一)非重力式支护结构挡墙的破坏土压力过大使拉杆断裂,或锚固失败、腰梁破坏、内支撑受压失稳。第24页/共97页强度破坏(非重力式) 2 支护墙体底

7、部走动支护墙入土深度不够或挖土过深以及水的冲刷均可产生这种破坏。需正确的计算入土深度 (一)非重力式支护结构挡墙的破坏第25页/共97页 3支护墙的平面变形过大或弯曲破坏支护墙截面过小、土压力估不准、墙后增大量地面荷载或挖土超深,需准确计算最大弯矩值以验算截面。(一)非重力式支护结构挡墙的破坏强度破坏(非重力式)第26页/共97页非重力式支护结构的稳定性破坏 1 墙后土体整体滑动失稳拉锚的长度不够、软粘腿发生圆弧滑动,引起支护结构整体失稳。 (一)非重力式支护结构挡墙的破坏第27页/共97页非重力式支护结构的稳定性破坏2 挡墙倾覆3 坑底隆起如挖土深度大,由于卸土过多,在墙后土重及地面荷载作用

8、下引起坑底隆起。(一)非重力式支护结构挡墙的破坏第28页/共97页非重力式支护结构的稳定性破坏 4 管涌在砂土区,当地下水较高坑较深时,在动水压力作用下,地下水绕过支护墙连砂土一同涌入基坑。 (一)非重力式支护结构挡墙的破坏第29页/共97页(二)重力式支护结构的破坏 重力式支护结构的破坏包括 强度破坏 稳定性破坏 其强度破坏只是水泥土抗剪强度不足,产生剪切破坏,为此需验算最大剪应力处的墙身应力。第30页/共97页(二)重力式支护结构的破坏 重力式支护结构的稳定性破坏包括: 1. 倾覆 2. 滑移 3. 土体整体滑动失稳 4. 坑底隆起 5. 管涌第31页/共97页 二 非重力式支护结构计算(

9、一)支护结构承受的荷载 支护结构承受的荷载一般包括 土压力 水压力 墙后地面荷载引起的附加荷载。第32页/共97页二 非重力式支护结构计算 1 土压力 主动土压力:若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力渐减小。当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以Ea表示。 Ea-滑裂面第33页/共97页二 非重力式支护结构计算静止土压力:若挡墙在土压力作用下墙本身不发生变形和任何位移(移动或滑动),墙后填土处于弹性平衡状态,则此时作用在挡墙上的土压力成为静止土压力。以E0表示。E0第34页/共97页二 非重力式支护结构计算(3)被动土压力:

10、若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以Ep表示。+外力Ep滑裂面第35页/共97页土压力表示 主动土压力强度(无粘性土) 粘性土 aaaKcHKtgcHtgP2)245(2)245(2aaaKcHKtgcHtgP2)245(2)245(2第36页/共97页 对于粘性土按计算公式计算时,主动土压力在土层顶部(H=0处)为负值,即)245(2tgcPa表明出现拉力区,这在实际上是不可能发生的。可计算临界高度以下的主动土压力:第37页/共97页ZcaKc2aCCaKZHtgZ

11、HP)()245()(2aCaKZHP)(H)245(2tgcZC可计算此种情况下的临界高度Zc,进而计算临界高度以下的主动土压力。第38页/共97页土压力表示 被动土压力强度 无粘性土 粘性土 )245()245(22tgKHKHtgPppppppKcHKctgHtgP2)245(2)245(2第39页/共97页土压力表示 悬臂式挡土结构,对于土的性质、荷载大小等非常敏感,它完全依靠足够的入土深度来保持其稳定性,故其高度一般不大于4。 为了施工的安全,支撑和锚杆宜根据最大土压力计算,即根据实测压力曲线的包络线来确定。该包络线近似梯形或矩形,与库伦理论计算的三角形土压力不同。第40页/共97页

12、土压力分布悬臂无支撑挡墙,其压力分布为主动土压力,是三角形分布,被动土压力也是三角形分布。被动土压力主动土压力第41页/共97页土压力分布多支撑或多拉锚的挡墙背面上的土压力分布图形砂土为梯形,粘土土压力分布图是稍复杂的三角形。第42页/共97页土压力分布悬臂挡土墙所承受的主动土压力完全由其底部的被动土压力来平衡;而锚定板单支点的挡土结构,其主动土压力则由锚定板拉杆和底部的被动土压力共同承受,加以平衡。TEa1Ea2EP第43页/共97页土压力分布 不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素

13、的影响而减小甚至消失。 、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高,对、C值产生影响。另外,降低地下水位也会使、C值产生变化。第44页/共97页2. 水压力 作用于支护结构上的水压力一般按静 水压力考虑。有稳态渗流时按三角形分布计算。ABCDEF第45页/共97页ABCEHF在有残余水压力时,水压力按梯形分布。第46页/共97页水压力和土压力 水压力和土压力的分算或合算问题,目前均采用。 一般情况下,由于粘性土中水主要是结晶水和结合水,宜合算; 在砂性土中土颗粒之间的空隙中充满的是自由水,受重力作用,为静水压

14、力作用,宜分算。第47页/共97页水压力和土压力 合算时,地下水位以下土的重力密度采用饱和重力密度sat ; 分算时,地下水位以下土的重力密度采用浮重力密度 ; 另外单独计算静水压力,按三角形分布考虑。sat第48页/共97页3. 墙后地面荷载引起附加荷载 有三种情况: 墙后有均布荷载 距离支护结构一定距离有均布荷载 距离支护结构一定距离有集中荷载(如塔吊、混凝土泵车等)由引起的附加荷载分布在支护结构的一定范围2上。第49页/共97页 墙后有均布荷载 如墙后堆有土方、材料等地面均布荷载对支护结构引起的附加荷载,可按下式计算: 2eaqKe2qH1e2e第50页/共97页 距离支护结构一定 距离

15、有均布荷载此时压应力传到支护结构上有一空白距离h1 ,在h1之下产生均布的附加应力:)245()245(211tgqetglhl11hqHe1e2245第51页/共97页3. 墙后地面荷载引起附加荷载 距离支护结构一定距离有集中荷载(如塔吊、混凝土泵车等)由引起的附加荷载分布在支护结构的一定范围2上。HPl2h2245第52页/共97页非重力式支护结构的计算 深基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计。 基坑支护结构极限状态可有两类: 承载能力极限状态 正常使用极限状态第53页/共97页非重力式支护结构的计算1.承载能力极限状态: 对应于支护结构达到最大承载能力或土体失稳、

16、过大变形导致支护结构或基坑周边环境破坏;2.正常使用极限状态: 对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。第54页/共97页基坑侧壁安全等级及重要性系数安全等级 破坏后果0一级支护结构破坏、土体失稳或变形过大对基坑周边环境及地下结构施工影响严重1.10二级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下结构影响一般1.00三级支护结构破坏、土体失稳或过大变形对基坑周边环境及地下结构施工影响不严重0.90第55页/共97页(二)悬臂桩墙的计算 排桩、地下连续墙嵌固深度设计值宜按下列规定: 1.悬臂式支护结构嵌固深度设计值hd宜按下式确定:02 .10aiaPJP

17、EhEhPJE桩墙底以上基坑内侧各土层被动土压力强度和aiE桩墙底以上基坑外侧各土层主动土压力强度和第56页/共97页悬臂桩墙的计算Ph合力PJE作用点至桩、墙底的距离ah合力aiE作用点至桩、墙底的距离h、 分别为基坑挖深和桩墙入土深度 dhhhpEa1Ea2Ea4Ea3EaEP1EP2EPahdhaPEE分别为被动土压力合力和主动土压力合力第57页/共97页 支护结构计算 当确定悬臂式及单支点支护结构嵌固深度设计值(构造要求)hhhhdd3.03.0时,宜取小于 当基坑底为碎石土及砂土,基坑内排水且作用有渗透压力时,嵌固深度设计值还应满足下式抗渗稳定条件:基坑挖深地面至地下水位的高度:)(

18、2.10hhhhhwawad第58页/共97页 单支点支护结构计算单层支点结构支点力及嵌固深度计算支点力:基坑底面以下支护结构设定弯矩零点至基坑底面距离hCl按下式确定PlkalkPPaCPCEEkaP1kPP1hdh1Th1Ch1Ph1ah1CTPCEaCE1aE2aE3aE第59页/共97页 单支点支护结构计算 单层支点结构支点力及嵌固深度计算支点力Tcl按下式计算11111CTPCPaCaChhEhEhT1Th1Ch支点至基坑底面的距离基坑底面至设定弯矩零点位置的位置11 aPhh 分别为合力 作用点至设定弯矩零点的距离aCPCEE第60页/共97页(三)支护结构计算的其它方法 1 等值

19、梁法 2弹性曲线法 3 竖向弹性地基梁法(基床系数法) 4 有限元法第61页/共97页等值梁法 图中ab梁一端固定一端简支,弯矩图的正负弯矩在c点转折,若将ab梁在c点切断,并于c点加一自由支承形成ac梁,则ac 梁上的弯矩将保持不变,即称ac梁为ab 梁上ac段上的等值梁。 等值梁原理ababc第62页/共97页等值梁法介绍等值梁法: 如ab梁一端固定,一端简支,弯矩图的正负弯矩在c点转折。若将ab梁在c点切断,并在c点置一自由支承,形成ac梁,则ac梁上的弯矩将保持不变,则称ac梁为ab梁上ac段的等值梁。HAPaBCD第63页/共97页等值梁法HAPaBCDPaP0等值梁板桩上土压力分布

20、图板桩弯矩图第64页/共97页等值梁法 用等值梁计算板桩,先要知道正负弯矩的转折点的位置。因板桩地面下土压力等于0的位置,接近正负弯矩的转折点,为简化即用土压力等于0的位置代替它。P0Pa第65页/共97页三 重力式支护结构计算 (一) 原理 重力式支护结构是依靠结构自身重力来维持极限平衡状态的。 (二) 荷载组合 1 土压力; 2 重力式结构自重; 3 地面超载包括:永久荷载、道路荷载、可变地下水位和施工荷载(施工机械荷载、材料堆放荷载)以及偶然荷载(地震荷载、人防荷载)。第66页/共97页(三)重力式结构计算内容 1 滑动稳定性验算 2 倾覆稳定性验算 3.土体整体滑动验算 4. 坑底隆起

21、验算 5. 管涌验算第67页/共97页重力式支护结构计算简图重力式支护结构主要是深层搅拌水泥土桩墙和旋喷桩帷幕墙,计算简图如图:EaEpBbbAahphah第68页/共97页(三)重力式支护结构计算(滑动稳定性)1 滑动稳定性验算抗滑动稳定安全系数:haPhKEEWKaPEEW墙体自重;基底墙体与土的摩擦系数; 被动土压力合力;主动土压力合力。第69页/共97页(三)重力式支护结构计算(倾覆稳定性)2 倾覆稳定性验算aPqaappqhhbWKhEhEWbK和 墙体自重; 墙体厚度之半;分别为 对墙趾A点的力臂。aPEE 和抗倾覆稳定安全系数;第70页/共97页(三)重力式支护结构(整体滑动验算

22、)3.土体整体滑动验算水泥土桩挡墙由于水泥掺量少,故将其看作提高了强度的部分土体,进行土体整体稳定性验算。R1B1O1A1B第71页/共97页重力式支护结构计算 (基坑隆起)4. 坑底隆起 开挖面以下墙体能起帮助抵抗地基土隆起的作用,宜假定土体沿墙体底面滑动,认为墙体底面以下为一圆弧,如图所示。产生滑动力的是 和q,抵抗滑动的则为土体抗剪强度。Hqz ZABOCDHfqZ Z Z E第72页/共97页重力式支护结构计算(基坑隆起)对于非理想粘性土,土的抗剪强度ctgAB面上 应为水平侧压力,取)245(2ZtgctgKqZctgaZ)(ctgKDqtgDqctgaffZ cossin)sin(

23、sin)sin(2第73页/共97页重力式支护结构计算(基坑隆起)ctgKDtgDctgaZ cossinsin23将滑动力矩与抗滑力矩分别对圆心O取矩,得2)(21DqHMS滑动力矩第74页/共97页重力式支护结构计算(基坑隆起) 抗滑动力矩hZZHZrMDdDdDdZM 40400将上式积分并整理后得hfMDHDcDDqtg)()344(23232232212DDqDqHHtgKMfar第75页/共97页 抗隆起安全系数重力式支护结构计算(基坑隆起)SrSMMK为达稳定,避免基坑隆起,必须满足 如要严格控制地面沉降,则需增加挡墙入土深度,或进行坑底土体加固,提高土体抗剪强度,使该系数达到1

24、.52.0。 3 . 12 . 1 SK第76页/共97页5管涌验算当基坑地下水的向上渗流力 时土颗粒处于悬浮状态,于是坑底产生管涌现象。不发生管涌的条件应为:重力式支护结构计算(管涌验算))(DGjwthhK2htj2t第77页/共97页 挡墙入土深度如满足以下要求,也不会产生管涌:重力式支护结构计算(管涌现象)2WhKt2hhKtW如坑底以上的土层为松散填土、多裂隙土层等透水性好的土层,则地下水可略去,此时不产生管涌的条件为:2WhKt第78页/共97页第三节 支护结构施工一 钢板桩施工 (一) 常用种类:U型、Z型、H型、直腹板式和组合式。第79页/共97页钢板桩的施工(二) 打设前准备

25、工作 1 钢板桩的检验和矫正 2 导架安装 3 沉桩机械的选择 打设钢板桩可用落锤、汽锤、柴油锤和振动锤,前三种皆为冲击打入法,此法可使桩锤的冲击力均匀分布,保护桩顶免受损坏。第80页/共97页钢板桩的施工(三)钢板桩的打设和拔除1 打设方式选择单独打入法 即从板桩墙的一角始,逐块打设,直至工程结束。屏风式打入法 即将1020根钢板桩成排插入导架内,呈屏风状,再分批施打。(按屏风排数,分为单屏风、双屏风和全屏风)第81页/共97页钢板桩施工(三)钢板桩的打设和拔除2 钢板桩的打设 吊车对准插桩,经纬仪加以控制,分几次打入, 注意位置和方向的精度,每打入1m应测量一次。第82页/共97页钢板桩的

26、施工3 钢板桩的转角和封闭 转角和封闭合拢施工的方法: 采用异型板桩 连接件法 骑缝搭接法 轴线调整法第83页/共97页钢板桩的施工4 钢板桩的拔除 拔桩前要研究钢板桩拔除顺序、拔除时间和桩孔处理方法。 拔除宜用振动锤或振动锤与起重机共同拔除。第84页/共97页二 钻孔灌注桩挡墙施工 钻孔灌注桩挡墙施工 (主要在第五章介绍) 钻孔灌注桩施工时无振动,不会危害周围建筑物等,造价低,有优越性。 施工速度慢,宜注意质量。 钻孔灌注桩的间距由计算确定。 钻孔灌注桩用作支护桩时,按钢筋混凝土正截面受弯构件计算配筋。第85页/共97页三 深层搅拌水泥土桩墙施工(一)施工机具 1 深层搅拌机 中心管喷浆方式 叶片喷浆方式 前者的输浆方式是水泥浆从两根搅拌轴间的另一根管输出;后者是使水泥浆从叶片的小孔喷出。 2 配套机械(灰浆搅拌机、集料斗、灰浆泵。) 第86页/共97页三 深层搅拌水泥土桩墙施工(二)施工工艺 定位预拌下沉制备水泥浆提升、喷浆、搅拌重复上、下搅拌清洗、移位第87页/共97页(三)水泥土的配合比水泥土的抗压强度一般为5004000 KN/,水泥的掺入量取决于水泥土挡墙设计的抗压强度。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论