




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考数学精品复习资料 2019.520xx年高考数学一轮复习精品学案(人教版a版)排列、组合、二项式定理一【课标要求】1分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3二项式定理能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题.二【命题走向】本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原
2、理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测2007年高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大.三【要点精讲】1排列、组合、二项式知识相互关系表2两个基本
3、原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。3排列(1)排列定义,排列数(2)排列数公式:系 =n·(n1)(nm+1);(3)全排列列: =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4组合(1)组合的定义,排列与组合的区别;(2)组合数公式:cnm=;(3)组合数的性质cnm=cnn-m;rcnr=n·cn-1r-1;cn0+cn1+cnn=2n;cn0-cn1+(-1)ncnn=0,即 cn0+cn2+cn4+=cn1+cn3+=2n-1;5二项式定理(1)二
4、项式展开公式:(a+b)n=cn0an+cn1an-1b+cnkan-kbk+cnnbn;(2)通项公式:二项式展开式中第k+1项的通项公式是:tk+1=cnkan-kbk;6二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。求数的末位;数的整除性及求系数;简单多项式的整除问题;(4)近似计算。当|x|充分小时,我们常用下列公式估计近似值:(1+x)n1+nx;(1+x)n1+nx+x2;(5)证明不等式。四【典例解析】题型1:计数原理例1完成下列选择题与填空题(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有 种.a81b64c24d4(
5、2)四名学生争夺三项冠军,获得冠军的可能的种数是( )a81b64c24d4(3)有四位学生参加三项不同的竞赛,每位学生必须参加一项竞赛,则有不同的参赛方法有 ;每项竞赛只许有一位学生参加,则有不同的参赛方法有 ;每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。解析:(1)完成一件事是“分步”进行还是“分类”进行,是选用基本原理的关键。将“投四封信”这件事分四步完成,每投一封信作为一步,每步都有投入三个不同信箱的三种方法,因此:n=3×3×3×3=34=81,故答案选a。本题也可以这样分类完成,四封信投入一个信箱中,有c31种投法;四封
6、信投入两个信箱中,有c32(c41·a22+c42·c22)种投法;四封信投入三个信箱,有两封信在同一信箱中,有c42·a33种投法、,故共有c31+c32(c41·a22+c42c22)+c42·a33=81(种)。故选a。(2)因学生可同时夺得n项冠军,故学生可重复排列,将4名学生看作4个“店”,3项冠军看作“客”,每个“客”都可住进4家“店”中的任意一家,即每个“客”有4种住宿法。由分步计数原理得:n=4×4×4=64。故答案选b。(3)学生可以选择项目,而竞赛项目对学生无条件限制,所以类似(1)可得n=34=81(种
7、);竞赛项目可以挑学生,而学生无选择项目的机会,每一项可以挑4种不同学生,共有n=43=64(种);等价于从4个学生中挑选3个学生去参加三个项目的竞赛,每人参加一项,故共有c43·a33=24(种)。例2(06江苏卷)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法(用数字作答).解析:本题考查排列组合的基本知识,由题意可知,因同色球不加以区分,实际上是一个组合问题,共有。点评:分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用
8、分类的方法可以有效的将之化简,达到求解的目的.题型2:排列问题例3(1)(2009浙江卷理)在二项式的展开式中,含的项的系数是( ) a b c d 答案 b 解析 对于,对于,则的项的系数是【点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;【突破】:利用组合思想写出项,从而求出系数;(2)(2009江西卷理)展开式中不含的项的系数绝对值的和为,不含的项的系数绝对值的和为,则的值可能为 a b c d 答案 d解析 ,则可取,选d点评:合理的应用排列的公式处理实际问题,首先应该进入排列问题的情景,想清楚我处理时应该如何去做。例4(1)用数字0,1,2,3,4组成没有重复数字的五位数
9、,则其中数字1,2相邻的偶数有个(用数字作答);(2)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).解析:(1)可以分情况讨论: 若末位数字为0,则1,2,为一组,且可以交换位置,3,4,各为1个数字,共可以组成个五位数; 若末位数字为2,则1与它相邻,其余3个数字排列,且0不是首位数字,则有个五位数; 若末位数字为4,则1,2,为一组,且可以交换位置,3,0,各为1个数字,且0不是首位数字,则有=8个五位数,所以全部合理的五位数共有24个。(2)分二步:首尾必须播放公益广告的有a22种;中间4个为不
10、同的商业广告有a44种,从而应当填 a22·a4448. 从而应填48。点评:排列问题不可能解决所有问题,对于较复杂的问题都是以排列公式为辅助.题型三:组合问题例5(2009全国卷理)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( d )(a)150种 (b)180种 (c)300种 (d)345种 解: 分两类(1) 甲组中选出一名女生有种选法; (2) 乙组中选出一名女生有种选法.故共有345种选法.选d(2)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个
11、数不小于该盒子的编号,则不同的放球方法有()a10种b20种c36种 d52种【解析】: (2)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:1号盒子中放1个球,其余3个放入2号盒子,有种方法;1号盒子中放2个球,其余2个放入2号盒子,有种方法;则不同的放球方法有10种,选a。点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合例6(1)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种;(2)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的
12、分派方法共有( )(a)150种 (b)180种 (c)200种 (d)280种 解析:(1)可以分情况讨论, 甲去,则乙不去,有=480种选法;甲不去,乙去,有=480种选法;甲、乙都不去,有=360种选法;共有1320种不同的选派方案;(2)人数分配上有1,2,2与1,1,3两种方式,若是1,2,2,则有60种,若是1,1,3,则有90种,所以共有150种,选a。点评:排列组合的交叉使用可以处理一些复杂问题,诸如分组问题等;题型4:排列、组合的综合问题例7平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。求:(1)这些直
13、线所交成的点的个数(除原10点外)。(2)这些直线交成多少个三角形.解法一:(1)由题设这10点所确定的直线是c102=45条。这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有c452个交点。而在原来10点上有9条直线共点于此。所以,在原来点上有10c92点被重复计数;所以这些直线交成新的点是:c45210c92=630。(2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即c6403=43486080(个).解法二:(1)如图对给定的10点中任取4
14、个点,四点连成6条直线,这6条直线交3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3c104=630。(2)同解法一。点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义.例8已知直线ax+by+c=0中的a,b,c是取自集合3,2,1,0,1,2,3中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。解 设倾斜角为,由为锐角,得tan=->0,即a、b异号。(1)若c=0,a、b各有3种取法,排除2个重复(3x-3y=0,2x-2y=0,x-y=0),故有3×3
15、-2=7(条);(2)若c0,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任两条直线均不相同,故这样的直线有3×3×4=36条,从而符合要求的直线共有7+36=43条;点评:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对c=0与c0正确分类;没有考虑c=0中出现重复的直线。题型5:二项式定理例9(1)(2009陕西卷文)若,则的值为 a. 2b.0 c. d. 答案 c 解析 由题意容易发现,则, 同理可以得出,亦即前2008项和为0, 则原式= 故选c.(2)的展开式中含x的正整数指数幂的项数是(a)0(b)2(c)
16、4(d)6解析:本题主要考查二项式展开通项公式的有关知识;(2)的展开式通项为,因此含x的正整数次幂的项共有2项.选b;点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令.在二项式的展开式中,要注意项的系数和二项式系数的区别.例10(1)(2008江苏10)将全体正整数排成一个三角形数阵:123456789101112131415按照以上排列的规律,第行()从左向右的第3个数为 【解析】本小题考查归纳推理和等差数列求和公式前n1 行共有正整数12(n1)个,即个,因此第n 行第3 个数是全体正整数中
17、第3个,即为【答案】(2)(2009北京卷理)若为有理数),则 ( ) a45 b55 c70 d80答案 c解析 本题主要考查二项式定理及其展开式. 属于基础知识、基本运算的考查. , 由已知,得,.故选c.(2)已知的展开式中第三项与第五项的系数之比为,其中=1,则展开式中常数项是( )(a)45i (b) 45i (c) 45 (d)45(2)第三项的系数为,第五项的系数为,由第三项与第五项的系数之比为可得n10,则,令405r0,解得r8,故所求的常数项为45,选a;(3)(2009湖南卷理)在的展开式中,的系数为_7_(用数字作答)答案 7 解析 由条件易知展开式中项的系数分别是,即
18、所求系数是点评:本题考查二项式展开式的特殊值法,基础题;题型6:二项式定理的应用例11证明下列不等式:(1)()n,(a、bx|x是正实数,nn);(2)已知a、b为正数,且+=1,则对于nn有(a+b)n-an-bn22n-2n+1。证明:(1)令a=x+,b=x,则x=;an+bn=(x+)n+(x-)n=xn+cn1xn-1+cnnn+xn-cn1xn-1+(-1)ncnnn=2(xn+cn2xn-22+cn4xn-44+)2xn即()n(2)(a+b)n=an+cn1an-1b+cnnbn(a+b)n=bn+cn1bn-1a+cnnan上述两式相加得:2(a+b)n=(an+bn)+c
19、n1(an-1b+bn-1a)+cnk(an-kbk+bn-kak)+cnn(an+bn) (*)+=1,且a、b为正数ab=a+b2 ab4又 an-kbk+bn-kak2=2()n(k=1,2,n-1)2(a+b) n2an+2bn+cn12()n+cn22()n+cnn-12()n(a+b)nan-bn(cn1+cn2+cnn-1)·()n(2n2)·2n=22n2n+1点评:利用二项式定理的展开式,可以证明一些与自然数有关的不等式问题。题(1)中的换元法称之为均值换元(对称换元)。这样消去奇数次项,从而使每一项均大于或等于零。题(2)中,由由称位置二项式系
20、数相等,将展开式倒过来写再与原来的展开式相加,这样充分利用对称性来解题的方法是利用二项式展开式解题的常用方法。例12(1)求4×6n+5n+1被20除后的余数;(2)7n+cn17n-1+cn2·7n-2+cnn-1×7除以9,得余数是多少?(3)根据下列要求的精确度,求1.025的近似值。精确到0.01;精确到0.001。解析:(1)首先考虑4·6n+5n+1被4整除的余数。5n+1=(4+1)n+1=4n+1+cn+114n+cn+124n-1+cn+1n·4+1,其被4整除的余数为1,被20整除的余数可以为1,5,9,13,17,然后考虑
21、4·6n+1+5n+1被5整除的余数。4·6n=4·(5+1)n=4(5n+cn1·5n-1+cn2·5n-2+cnn-1·5+1),被5整除的余数为4,其被20整除的余数可以为4,9,14,19。综上所述,被20整除后的余数为9。(2) 7n+cn1·7n-1+cn2·7n-2+cnn-1·7 =(7+1)n1=8n1=(9-1)n1 =9n-cn1·9n-1+cn2·9n-2+(1)n-1cnn-1·9+(1)ncnn-1(i)当n为奇数时原式=9n-cn1·9n-1+cn2·9n-2+(1)n-1cnn-1·92除以9所得余数为7。(ii)当n为偶数时原式=9n-cn1&
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代办公室中的网络舆情危机防范策略
- 科技与社会发展的紧密联系-科普解读
- 2025蒙电资本控股公司市场化选聘所属子公司总监人员笔试参考题库附带答案详解
- 科技推动办公的未来科学家的视野
- 2025河南省云煤二矿招聘60人笔试参考题库附带答案详解
- 煤矿主通风机司机职业技能理论考试题库150题(含答案)
- 科技助力医疗诊断的准确性与效率
- 科技助力教师汇报制作能力飞跃
- 2025至2030年中国自酿扎啤设备数据监测研究报告
- 现代教育技术助力办公效率提升
- 新风施工合同
- 2025-2030年园艺修剪机器人行业深度调研及发展战略咨询报告
- 人教版四年级数学下册第四单元测试卷(含答案)
- 2025年湖北省技能高考(建筑技术类)《建筑工程测量》模拟练习试题库(含答案)
- 2024-2027年中国网络安全评估行业发展监测及投资战略研究报告
- 失智老年人照护X证书制度试点工作养老护理职业和失智老人照护员工种的发展讲解
- 北师大版二年级数学下册各单元测试卷
- 品管圈PDCA改善案例-降低住院患者跌倒发生率
- GB/T 12996-2024电动轮椅车
- 成人氧气吸入疗法-中华护理学会团体标准
- 西师版二年级数学下册全册课件【完整版】
评论
0/150
提交评论