高考复习方案大二轮全国新课标数学文科高考备考方法策略:专题篇数列 1数列求和的七种基本方法 Word版含答案_第1页
高考复习方案大二轮全国新课标数学文科高考备考方法策略:专题篇数列 1数列求和的七种基本方法 Word版含答案_第2页
高考复习方案大二轮全国新课标数学文科高考备考方法策略:专题篇数列 1数列求和的七种基本方法 Word版含答案_第3页
高考复习方案大二轮全国新课标数学文科高考备考方法策略:专题篇数列 1数列求和的七种基本方法 Word版含答案_第4页
高考复习方案大二轮全国新课标数学文科高考备考方法策略:专题篇数列 1数列求和的七种基本方法 Word版含答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高考数学精品复习资料2019.5数列求和的七种基本方法数列求和的七种基本方法数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过题目(这些题目基本涵盖了高考卷中的数列求和题)简单介绍数列求和的七种基本方法1运用公式法运用公式法很多数列的前n项和ns的求法,就是套等差、等比数列前 n 项和ns的公式,因此以下常用公式应当熟记:221231123(1)21 35(21)12222111111122222nnnnnn nnn 还要记住一些正整数的幂和公式:2233332222) 1(41321) 12)(1(61321nnnnnnn题题 1(高考全国卷 i 文科第 1

2、7 题)已知 na是公差为 3 的等差数列,数列 nb满足12111=3n nnnbba bbnb1,(1)求 na的通项公式;(2)求 nb的前 n 项和解解(1)在11nnnna bbnb中选1n ,得1 221a bbb,即11111,233aa又因为 na是公差为 3 的等差数列,所以23(1)31nann(2)由(1)得1131nnnnbbnb,即113nnbb,得 nb是以 1 为首项,13为公比的等比数列,得113nnb .所以 nb的前n项和111313122 313nnns2倒序相加法倒序相加法事实上,等差数列的前n项和ns的公式推导方法就是倒序相加法题题 2求正整数m与()

3、n mn之间的分母为 3 的所有既约分数的和s解解显然,这些既约分数为:31,32,34,34,32,31nnnmmm有)31()32()34()34()32()31(nnnmmms也有)31()32()34()34()32()31(mmmnnns所以2222),(2)(2)(2mnsmnmnnms题题 3 3求数列123n 的前 n 项和ns.解法解法 1因为211123(1)()22nn nnn ,所以22221(123)(123)2nsnn 1 111(1)(21)(1)(1)(2)2 626n nnn nn nn解法解法 2因为2331211123(1)ccc(2)2nnnnn nn

4、所以33333333343542121c(cc )(cc )(cc)c(1)(2)(2)6nnnnsn nnn进而可得1(1)(2)(6nsn nnnn*).解法解法 3(倒序相加法)可得1 (12)(123)(123)nsn 1 (2 1)(32 1)(1)(2)1nsnnn 1212(1)(1) (2)(2)(2)(1 1 11)nnnsnnnnnn 个个()3个()把它们相加,得31(2)2(2)3(2)(2)nsnnnn n1(123)(2)(1)(2)2n nn nn 1(1)(2)6nsn nn3裂项相消法裂项相消法题题 4(高考天津卷理科第 18 题)已知 na是各项均为正数的等

5、差数列,公差为d.对任意的*nn,nb是na和1na的等比中项.(1)设22*1,nnncbb nn,求证:数列 nc是等差数列;(2)设1ad,2211nknkktb,*nn,求证:21112nkktd.解解(1)可得21nnnba a,所以221nnncbb121nnnnaaa a12nda212122nnnnccd aad所以数列 nc是等差数列.(2)可得1(1)(1)naanddndnd,还可得式在这里也成立,所以 2222221234212nnntbbbbbb 2422nd aaa222(2462 )21dnd n n所以222211111111111112121212nnnkkk

6、ktdk kdkkdnd4分组求和法分组求和法题题 5求11111111111224242nns 解解设11111242nna ,得1122nna所以本题即求数列1122n的前n项和:111111212222422nnnnsnnan题题 6 6(高考天津卷文科第 18 题)已知an是等比数列, 前 n 项和为 sn(nn*), 且1a11a22a3,s663.(1)求an的通项公式;(2)若对任意的 nn*,bn是 log2an和 log2an1的等差中项,求数列(1)nb2n的前 2n 项和解解(1)设等比数列 na的公比为q,可得2111112aa qa q,解得2q 或1.又由61(1)

7、631naqsq知,1q ,所以61(1 2 )631 2a,解得11a .得数列an的通项公式是12nna.(2)由题意,可得21)2log2(log21)log(log21212122naabnnnnn所以数列) 1(2nnb的前n项和为22221234()()bbbb 222122121222 ()()22nnnnn bbbbbbbn题题 7(高考浙江卷文科第 17 题)设数列 na的前n项和为ns.已知24s ,121nnas,*nn.(1)求通项公式na;(2)求数列2nan的前n项和.解解(1)可得21221421saaaa,解得1213aa.由121nnas,121nnas2n,

8、可得 1121212nnnnnaassa,13nnaa2n.又因为213aa,所以可得数列 na的通项公式为13nna.(2)得 bn|ann2|=|3n1n2|,所以 b12,b21.当 n3 时,由于 3n1n2,所以 bn3n1n2(n3).设数列bn的前 n 项和为 tn,得 t12,t23.当 n3 时,可得tn39(13n2)13(n7) (n2)23nn25n112进而可得 tn2,n1,3nn25n112,n2,nn*.题题 8(高考四川卷文科第 19 题)已知数列 na的首项为1,ns为数列 na的前n项和,11nnsqs,其中0q ,*nn.(1)若2a,3a,23+aa成

9、等差数列,求数列 na的通项公式;(2)设双曲线2221nyxa的离心率为ne,且22e ,求22212neee.解解(1)由 sn1qsn1,sn2qsn11(nn*),两式相减得 an2qan1(nn*).又由 s2qs11,11a ,可得 a2qa1,所以 an+1qan(nn*).得数列an是首项为 1,公比为 q 的等比数列,所以 anqn1.再由 a2,a3,a2a3成等差数列,可得 2a3a2a2a3即 a32a2,得 q2.所以数列an的通项公式是 an2n1(2) 在 (1) 的 解 答 中 已 得 an qn1, 所 以 双 曲 线 x2y2a2n 1 的 离 心 率22(

10、1)11nnneaq-=+=+由 e2 1q22,解得 q 3,所以e21e22e2n(11)(1q2)1q2(n1)n1q2q2(n1)nq2n1q21n12(3n1)5错位相减法错位相减法题题 9(高考山东卷理科第 18 题即文科第 19 题)已知数列 na的前n项和238nsnn, nb是等差数列,且1.nnnabb(1)求数列 nb的通项公式;(2)令1(1).(2)nnnnnacb求数列nc的前n项和nt.解解(1)由题意知,当 n2 时,ansnsn16n5.又因为 a1s111,所以 an6n5(nn*).设等差数列bn的公差为 d.可得a1b1b2,a2b2b3,即112b1d

11、172b13d,解得b14,d3,所以 bn3n1.(2)由(1)的解答,可得 cn(6n6)n1(3n3)n3(n1)2n1.又由 tnc1c2cn,得tn3222323(n1)2n12tn3223324(n1)2n2把它们相减,得tn322223242n1(n1)2n2344(12n)12(n1)2n2 3n2n2所以 tn3n2n2.6待定系数法待定系数法题题 10数列3) 12(nn的前n项和ns解解设等差数列ma的公差为d,等比数列mb的公比为(1)q q ,得111(1) (1,2, )mmmabamdbqmn先用错位相减法求数列mmab的前n项和ns:21111112111111

12、211112111111()(2 )(1) ()(2) (1) (1)(1) ()(1) (1nnnnnnnnnnnsb aad qad qand qqsba qad qand qand qq sb adqdqdqand qbddqdqdqand qadddqbanq11) nd qad111111nnqddsdnadqadbqq所以有下面的结论成立:若,mmab分别是等差数列、等比数列(其公比1q),且11,a b均是与n无关的常数,则数列mmab的前n项和bqbansnn)(,其中, a b是与n无关的常数由此结论就可以用待定系数法快速求解本题:可设() 3nnsanbb(其中, a b是

13、常数)可 得123,32730ss, 所 以3()39(2)30abbabb, 解 得33ab , 所 以33) 1(1nnns题题 11求和1221 2 +2 2+3 2+(1) 2 +2nnnnsnn 解解得012111111+2+3+22222nnnsn用待定系数法可求出该等式的右边为1242nn,所以2224nnsn七、求导法、积分法七、求导法、积分法题题 12(1)求证:) 1(111132xxxxxxxnn;(2)求证:) 1() 1(1 1) 1(321212xxxnxnxxxnn;(3)求数列(21) 3nn的前n项和ns解解(1)当0 x时,显然成立当0 x时,由等比数列的前

14、n项和公式知,欲证结论也成立(2)视(1)的结论为两个函数相等,两边求导后即得欲证成立(3)1(21) 3 =6(3)3nnnnn在(2)的结论中令3x,得数列13nn的前n项和为413) 12(nn;又因为数列 3n的前n项和为2331n所以数列(21) 3nn的前n项和为33) 1(233413) 12(611nnnnnns题题 13(高考江苏卷第 23 题)请先阅读:在等式xxx( 1cos22cos2r)的两边对 x 求导,得) 1cos2()2(cos2xx由求导法则,得)sin(cos42)2sin(xxx,化简后得等式xxxcossin22sin(1)利用上题的想法(或其他方法),试由等式xxcxcxccxnnnnnnn()1 (2210r,整数)2n证明:nkkknnxkcxn211

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论