《木材力学性质》ppt课件_第1页
《木材力学性质》ppt课件_第2页
《木材力学性质》ppt课件_第3页
《木材力学性质》ppt课件_第4页
《木材力学性质》ppt课件_第5页
已阅读5页,还剩79页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第第 6 章章 木材力学性质木材力学性质木材力学性质:木材力学性质: 木材在外力作用下木材在外力作用下, ,在变形和破坏方面所表现出来在变形和破坏方面所表现出来 的性质。的性质。 木材的力学性质主要包括:木材的力学性质主要包括: 弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、弹性、塑性、蠕变、抗拉强度、抗压强度、抗弯强度、 抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐抗剪强度、冲击韧性、抗劈力、抗扭强度、硬度和耐 磨性等。磨性等。木材力学性质的各向异性木材力学性质的各向异性 资料力学的根本假资料力学的根本假设设 与普通钢材、混凝土及石材等资料不同,木材属生物与普通钢材、混凝土及石材等资料不

2、同,木材属生物 资料,其构造的各向异性导致其力学性质的各向异性。资料,其构造的各向异性导致其力学性质的各向异性。 因此,木材力学性质目的有顺纹、横纹、径向、弦向因此,木材力学性质目的有顺纹、横纹、径向、弦向 之分。之分。学习木材力学性质的意义学习木材力学性质的意义 掌握木材的特性,合理选才、用材。掌握木材的特性,合理选才、用材。学习难点学习难点 木材力学性质根本概念的了解、木材力学性木材力学性质根本概念的了解、木材力学性 质特点及其影响要素。质特点及其影响要素。本章重点本章重点 掌握木材主要力学性质的种类、受力方式及掌握木材主要力学性质的种类、受力方式及 其测定方法。其测定方法。 木材允许应力

3、确实定。木材允许应力确实定。 6.1 木材力学根底实际与特点木材力学根底实际与特点 6.1.1 应力与应变应力与应变 应力:分布内力的集度应力:分布内力的集度Nm26.1.1.1 应力应力应力的根本类型:拉应力、压应力、剪应力应力的根本类型:拉应力、压应力、剪应力u拉应力拉应力=P/Au压应力压应力=-P/Au剪应力剪应力=P/AQ 6.1.1.2 应变应变 6.1.1.3 应力、应变应力、应变 的关系的关系=L / L在弹性范围内,有在弹性范围内,有LLP引入的比例常数引入的比例常数 E 式中:式中:E 拉压弹性模量,与资料有关,由拉压弹性模量,与资料有关,由 实验获得,是资料的刚性目的。实

4、验获得,是资料的刚性目的。= E (胡克胡克定理定理)实验阐明实验阐明: 木材的抗压、抗拉及抗弯时的木材的抗压、抗拉及抗弯时的 E 值值 大大 致相等。致相等。 6.1. 2 比例极限、弹性变形、永久变形比例极限、弹性变形、永久变形实验阐明实验阐明: 木材抗压比例木材抗压比例 极限极限P 比抗比抗 拉时小得多。拉时小得多。1比例极限比例极限P 比例极限工程意比例极限工程意义义2弹性变形弹性变形3永久变形永久变形 6.1. 3 刚度、脆性、韧性和塑性刚度、脆性、韧性和塑性 木材具有较高的刚度密度比,故可用于建筑资料。1刚度刚度资料抵抗变形的才干资料抵抗变形的才干 2脆性脆性资料在破坏之前无明显变

5、形的资料在破坏之前无明显变形的 性质。性质。 木材的脆性与树种、生长环境、遗传、生长 应力、缺陷和腐朽有关。 脆性大的木材,一脆性大的木材,一 般质量较轻,纤般质量较轻,纤维维 素的含量低。素的含量低。 生长轮特别宽的针叶树材及生长轮特别窄的生长轮特别宽的针叶树材及生长轮特别窄的 阔叶树材易构成脆性木材。阔叶树材易构成脆性木材。3韧性韧性资料抵抗冲击的才干资料抵抗冲击的才干KJm2 韧性大的木材抗冲击才干强,抗劈性也强。所以工程中用木材的抗冲击性和抗劈性来表示木材的韧性。4塑性塑性资料所具有的坚持不可恢复的变形资料所具有的坚持不可恢复的变形 的性质。的性质。l木材属于非完全弹性资料,仅在一定范

6、围内具有木材属于非完全弹性资料,仅在一定范围内具有弹性,超越此范围后,木材即产生塑性变形。弹性,超越此范围后,木材即产生塑性变形。l木材的塑性与树种、树龄、温度、含水率有关。木材的塑性与树种、树龄、温度、含水率有关。普通地,木材的塑性随温度及含水率的升高而增普通地,木材的塑性随温度及含水率的升高而增大。木材的主要成分大。木材的主要成分l木材塑性的工程运用木材塑性的工程运用6.1.4 木材的粘弹性木材的粘弹性6.1.4.1 弹性固体与粘性流体的变形特性弹性固体与粘性流体的变形特性1弹性固体弹性固体 具有确定的外形,变形只与外力有关,与时间无关。卸除外力后,变形消逝,恢复原形。2粘性流体粘性流体

7、无确定的外形,取决于容器。变形除与外力有关外还与时间有关,产生不可逆的流动变形。6.1.4.2 木材的粘弹性木材的粘弹性 木材为生物高分子资料,具有弹性固体和粘性流体的特性。同时具有弹性和粘性两种不同机制的变形。表达着弹性固体和流体的综合特性。木材的这种特性称为木材的粘弹性。如蠕变及松弛。1木材蠕变木材蠕变 木材蠕变木材在恒应力下其变形随时间的添加 而增大的景象。木材蠕变过程的三种变形:木材蠕变过程的三种变形:瞬时弹性变形服从胡克定理瞬时弹性变形服从胡克定理弹性滞后变形粘弹性纤维素弹性滞后变形粘弹性纤维素分子链的卷曲或伸展所致。分子链的卷曲或伸展所致。塑性变形塑性纤维素分子链间的相对滑动所致。

8、塑性变形塑性纤维素分子链间的相对滑动所致。2木材松弛景象木材松弛景象l有蠕变必有松弛,有蠕变必有松弛,反之亦然。反之亦然。l蠕变及松弛与木材的树种蠕变及松弛与木材的树种密度有关,还与温度密度有关,还与温度及含水率有关。及含水率有关。3蠕变与松弛对工程的影响蠕变与松弛对工程的影响 木材松弛木材在恒应变下应力随时间的增长 而减小的景象。4木材蠕变特性研讨简介木材蠕变特性研讨简介 木材的蠕变特性曲线是一木材的蠕变特性曲线是一 粘弹性曲线。粘弹性曲线。 木材的蠕变变形由三个部木材的蠕变变形由三个部 分组成:分组成:NoImage0)()(ttJ第一部分第一部分 是由木材内部高度结晶的微纤丝构架而引起的

9、是由木材内部高度结晶的微纤丝构架而引起的 弹性变形,这种变形是瞬间完成;弹性变形,这种变形是瞬间完成;4木材蠕变特性研讨简介木材蠕变特性研讨简介第二部分是链段的伸展而第二部分是链段的伸展而 引起的延迟弹性引起的延迟弹性 变形,这种变形变形,这种变形 是随时间而变化是随时间而变化 的;的;第三部分是高分子的相第三部分是高分子的相 互滑移引起的互滑移引起的 粘性流动。粘性流动。 , 力学模型力学模型, 根据流变学实际,其任一瞬时的蠕变柔量根据流变学实际,其任一瞬时的蠕变柔量Jt为:为:)1 ()(/100iztniieJtJtJ 数学模型数学模型5.1.5 木材力学性质的特点木材力学性质的特点 o

10、5.1.5.1 木材性质的层次性木材性质的层次性o针叶材阔叶树层次状明显,木材横切面上可以针叶材阔叶树层次状明显,木材横切面上可以见到致密的晚材与组织疏松的早材构成年轮而见到致密的晚材与组织疏松的早材构成年轮而成同心园状。径切面上早晚材交替为平行的条成同心园状。径切面上早晚材交替为平行的条纹;弦切面上那么交替为纹;弦切面上那么交替为“V形花纹;木材力形花纹;木材力学性能各轮多少有点差别。学性能各轮多少有点差别。 o5.1.5.2 多孔性多孔性o木材主要是细胞组成,微观构造上横切面所察木材主要是细胞组成,微观构造上横切面所察看到细胞断面为孔眼;径切面、弦切面上为中看到细胞断面为孔眼;径切面、弦切

11、面上为中空管状,及细胞壁上纹孔等;宏观构造上,导空管状,及细胞壁上纹孔等;宏观构造上,导管分子孔状构造等。管分子孔状构造等。 5.1.5.3 木材力学性质各向异性木材力学性质各向异性o前述木材物理性质干缩性、热、电、声学等构造性质各向异性,前述木材物理性质干缩性、热、电、声学等构造性质各向异性,同样木材力学性质亦存在着各向异性。木材大多数细胞轴向陈列,仅同样木材力学性质亦存在着各向异性。木材大多数细胞轴向陈列,仅少量木射线径向陈列。木材为中空的管状细胞组成,其各个方向施加少量木射线径向陈列。木材为中空的管状细胞组成,其各个方向施加外力,木材破坏时产生的极限应力不同。例如顺纹抗拉强度可达外力,木

12、材破坏时产生的极限应力不同。例如顺纹抗拉强度可达120.0-150.0Mpa,而横纹抗拉强度仅,而横纹抗拉强度仅3.0-5.0Mpa(C-H,H-O),这主要与其组成分子的价键不同所致。轴向纤维素链状分子是以这主要与其组成分子的价键不同所致。轴向纤维素链状分子是以C-C、 C-O键衔接,而横向纤维素链状分子是以键衔接,而横向纤维素链状分子是以C-H、H-O衔接,二者价键衔接,二者价键的能量差别很大。的能量差别很大。5.1.5.4 木材的亲湿性木材的亲湿性o前述纤维饱和点是材性变化转机点,木材含水前述纤维饱和点是材性变化转机点,木材含水率在纤维饱和点以下时,如木材中纤维素和半率在纤维饱和点以下时

13、,如木材中纤维素和半纤维素分子上游离羟基吸收空气中水分子,会纤维素分子上游离羟基吸收空气中水分子,会使木材体积、密度发生变化,从而导致木材强使木材体积、密度发生变化,从而导致木材强度发生变化。度发生变化。 5.1.5.5 木材力学性量变异性木材力学性量变异性o不同树种不同树种,木材力学性质不同。同一树种,不同木材力学性质不同。同一树种,不同部位不同力学性质不同部位不同力学性质不同.同一树种同一树种,生长条件不同生长条件不同力学性质不同;同时木材各种缺隙如节子,纹力学性质不同;同时木材各种缺隙如节子,纹理、腐朽等都会影响木材力学性能。理、腐朽等都会影响木材力学性能。5.2 木材主要力学性质测定原

14、理与方法木材主要力学性质测定原理与方法 o木材力学性质研讨,适及到力学种类、受力方木材力学性质研讨,适及到力学种类、受力方向、静力荷载与动力荷载以及加工工艺等。木向、静力荷载与动力荷载以及加工工艺等。木材的强度象其它资料一样,可分为抗拉、抗压、材的强度象其它资料一样,可分为抗拉、抗压、抗剪、抗弯、抗扭、抗劈、耐磨性、抗冲击和抗剪、抗弯、抗扭、抗劈、耐磨性、抗冲击和硬度等。木材是非均质性的各向异性资料,其硬度等。木材是非均质性的各向异性资料,其纵向、径向和弦向三个方向力学强度具有明显纵向、径向和弦向三个方向力学强度具有明显的差别。木材主要力学性质的测定主要采用静的差别。木材主要力学性质的测定主要

15、采用静力荷载进展。力荷载进展。 5.2.1 木材的抗拉强度木材的抗拉强度 o木材顺纹抗拉强度,是指木材沿纹理方向接受拉力荷载木材顺纹抗拉强度,是指木材沿纹理方向接受拉力荷载的最大才干。木材的顺纹抗拉强度较大,各种木材平均的最大才干。木材的顺纹抗拉强度较大,各种木材平均约为约为117.7147.1MPa,为顺纹抗压强度的,为顺纹抗压强度的23倍。倍。木材在运用中很少出现因被拉断而破坏。木材在运用中很少出现因被拉断而破坏。o木材顺纹拉伸破坏主要是纵向撕裂粗微纤丝和微纤丝间木材顺纹拉伸破坏主要是纵向撕裂粗微纤丝和微纤丝间的剪切。微纤丝纵向的的剪切。微纤丝纵向的C-C、C-O键结合非常结实,所键结合非

16、常结实,所以顺拉破坏时的变形很小,通常应变值小于以顺拉破坏时的变形很小,通常应变值小于13,而强度值却很高。而强度值却很高。 木材顺纹抗拉力学试样及其受力方向木材顺纹抗拉力学试样及其受力方向 实验时采用附有自动对直和拉紧夹具的实验机进展,实验以均匀速度加荷,在实验时采用附有自动对直和拉紧夹具的实验机进展,实验以均匀速度加荷,在1.5-2.0分钟内使试样破坏。顺纹抗拉强度按下式计算。分钟内使试样破坏。顺纹抗拉强度按下式计算。wP/a.b式中:式中:P最大荷载最大荷载,N;a,b一试样任务部位横断面一试样任务部位横断面(cm2);W一实验时的木材含水率一实验时的木材含水率()。 5.2.1.2 横

17、纹抗拉强度横纹抗拉强度 木材横纹抗拉试样及其受力方向木材横纹抗拉试样及其受力方向 木材的横纹拉力比顺纹拉力低得多,普通只需顺木材的横纹拉力比顺纹拉力低得多,普通只需顺纹拉力的纹拉力的l/301/40。由于木材径向受拉时,除。由于木材径向受拉时,除木射线细胞的微纤丝受轴向拉伸外,其他细胞的木射线细胞的微纤丝受轴向拉伸外,其他细胞的微纤丝都受垂直方向的拉伸;横纹方向微纤丝上微纤丝都受垂直方向的拉伸;横纹方向微纤丝上纤维素链间是以氢键纤维素链间是以氢键-OH接合的,这种键的接合的,这种键的能量比木材纤维素纵向分子间能量比木材纤维素纵向分子间C-C、C-O键接合键接合的能量要小得多。此外,横纹拉力实验

18、时,应力的能量要小得多。此外,横纹拉力实验时,应力不易均匀分布在整个受拉上,往往先在一侧被拉不易均匀分布在整个受拉上,往往先在一侧被拉劈,然后扩展到整个断面而破坏,并非真正横纹劈,然后扩展到整个断面而破坏,并非真正横纹抗拉强度。抗拉强度。5.2.2 木材的抗压强度木材的抗压强度 o5.2.2.1 顺纹抗压强度顺纹抗压强度 o木材顺纹抗压强度是指木材沿纹理方向接受压力荷载的木材顺纹抗压强度是指木材沿纹理方向接受压力荷载的最大才干,主要用于诱导构造材和建筑材的榫接合类似最大才干,主要用于诱导构造材和建筑材的榫接合类似用途的允许任务应力计算和柱材的选择等,如木构造支用途的允许任务应力计算和柱材的选择

19、等,如木构造支柱、矿柱和家具中的腿构件所接受的压力。柱、矿柱和家具中的腿构件所接受的压力。o木柱有长柱与短柱之分。当长度与最小断面的直径之比木柱有长柱与短柱之分。当长度与最小断面的直径之比小于小于11或等于或等于11时为短柱,大于时为短柱,大于11时为长柱,长柱时为长柱,长柱亦称欧拉柱。长柱以资料刚度为主要要素,受压不稳定,亦称欧拉柱。长柱以资料刚度为主要要素,受压不稳定,其破坏不是单纯的压力所致,而是纵向上会发生弯曲、其破坏不是单纯的压力所致,而是纵向上会发生弯曲、产生扭矩,最后导致破坏,它已不属于顺纹抗压的范畴。产生扭矩,最后导致破坏,它已不属于顺纹抗压的范畴。1顺纹抗压强度的测定顺纹抗压

20、强度的测定o我国国家规范我国国家规范GB 1927-1943-91规定,只测定短柱的最大抗压强度。其试样尺寸为规定,只测定短柱的最大抗压强度。其试样尺寸为202030mm,长度平行于木材纹理;长度平行于木材纹理;wP/a bo12w1+0.05(W-12)o式中:式中:P破坏荷载,破坏荷载,N;oa,b试样断面尺寸,试样断面尺寸,mm;oW实验时的木材含水率实验时的木材含水率();ow、12木材气干形状、规范含水率木材气干形状、规范含水率12%时的强度,时的强度,Mpa。o我国木材顺压强度的平均值约为我国木材顺压强度的平均值约为45Mpa;顺压比例极限与强度的比;顺压比例极限与强度的比值约为值

21、约为0.7,针叶树材该比值约为,针叶树材该比值约为0.78,软阔叶树材为,软阔叶树材为0.70,硬阔,硬阔叶树材为叶树材为0.66。针叶树材具有较高比例极限的缘由是,它的构造较。针叶树材具有较高比例极限的缘由是,它的构造较单纯且有规律;硬阔叶树环孔材因构造不均一,使这一比值最低。单纯且有规律;硬阔叶树环孔材因构造不均一,使这一比值最低。 2顺纹抗压强度试样破坏的外形顺纹抗压强度试样破坏的外形o根据试样破坏面的形状,顺纹抗压试样的破坏根据试样破坏面的形状,顺纹抗压试样的破坏可分为以下六种外形:紧缩、楔形劈裂、剪切、可分为以下六种外形:紧缩、楔形劈裂、剪切、劈裂、紧缩与顺纹剪切和压披,劈裂、紧缩与

22、顺纹剪切和压披, 木材顺纹抗压破坏时常见的六种形状木材顺纹抗压破坏时常见的六种形状 5.2.2.2 横纹抗压强度横纹抗压强度o横纹抗压强度的测定有两种方式横纹抗压强度的测定有两种方式:横纹全部拉压和横纹部分横纹全部拉压和横纹部分抗压强度。荷载作用于试样的全部,称为横纹全部拉压强度;抗压强度。荷载作用于试样的全部,称为横纹全部拉压强度;荷载作用于试样的部分,称为横纹部分抗压强度。依荷载作荷载作用于试样的部分,称为横纹部分抗压强度。依荷载作用于年轮的方向,分为弦向抗压和径向抗压。外力相切于年用于年轮的方向,分为弦向抗压和径向抗压。外力相切于年轮的方向为弦向,垂直于年轮的方向为径向。因此横纹横纹轮的

23、方向为弦向,垂直于年轮的方向为径向。因此横纹横纹抗压强度有径向全部抗压、弦向全部抗压与径向部分抗压、抗压强度有径向全部抗压、弦向全部抗压与径向部分抗压、弦向部分抗压四种方式弦向部分抗压四种方式 木材横纹抗压强度测定试样与受力方向木材横纹抗压强度测定试样与受力方向1-径向全部抗压径向全部抗压 2-径向部分抗压径向部分抗压 针叶材及阔叶树环孔材径向受压针叶材及阔叶树环孔材径向受压时应力与应变间的关系时应力与应变间的关系 5.2.3 木材的抗弯强度木材的抗弯强度 o5.2.3.1 木梁接受弯曲荷载时应力的分布特点木梁接受弯曲荷载时应力的分布特点o木材抗弯强度是指木材接受逐渐施加弯曲荷载的最大才干,木

24、材抗弯强度是指木材接受逐渐施加弯曲荷载的最大才干,可以用曲率半径的大小来度量。它与树种、树龄、部位、含可以用曲率半径的大小来度量。它与树种、树龄、部位、含水率和温度等有关。水率和温度等有关。o木材抗弯强度亦称静曲强度,或弯曲强度,是重要的木材力木材抗弯强度亦称静曲强度,或弯曲强度,是重要的木材力学性质之一,主要用于家具中各种柜体的横梁、建筑物的桁学性质之一,主要用于家具中各种柜体的横梁、建筑物的桁架、地板和桥梁等易于弯曲构件的设计。静力荷载下,木材架、地板和桥梁等易于弯曲构件的设计。静力荷载下,木材弯曲特性主要决议于顺纹抗拉和顺纹抗压强度之间的差别。弯曲特性主要决议于顺纹抗拉和顺纹抗压强度之间

25、的差别。由于木材接受静力抗弯荷载时,经常由于紧缩而破坏,并因由于木材接受静力抗弯荷载时,经常由于紧缩而破坏,并因拉伸而产生明显的损伤。对于抗弯强度来说,控制着木材抗拉伸而产生明显的损伤。对于抗弯强度来说,控制着木材抗弯比例极限的是顺纹抗压比例极限时的应力,而不是顺纹抗弯比例极限的是顺纹抗压比例极限时的应力,而不是顺纹抗拉比例极限时应力。拉比例极限时应力。木材接受弯曲荷载时受力方式与应力分布情况木材接受弯曲荷载时受力方式与应力分布情况 o当梁接受中央荷载弯曲时,梁的变形是上凹下凸,上部当梁接受中央荷载弯曲时,梁的变形是上凹下凸,上部纤维受压应力而缩短,下部纤维受拉应力而伸长,其间纤维受压应力而缩

26、短,下部纤维受拉应力而伸长,其间存在着一层纤维既不受紧缩短也不受拉伸长,这一层长存在着一层纤维既不受紧缩短也不受拉伸长,这一层长度不变的纤维层称为中性层。中性层与横截面的交线称度不变的纤维层称为中性层。中性层与横截面的交线称为中性轴。受压和受拉区应力的大小与距中性轴的间隔为中性轴。受压和受拉区应力的大小与距中性轴的间隔成正比,中性层的纤维接受程度方向的顺纹剪力。由于成正比,中性层的纤维接受程度方向的顺纹剪力。由于顺纹抗拉强度是顺纹抗压强度的顺纹抗拉强度是顺纹抗压强度的23倍,随着梁弯曲倍,随着梁弯曲变形的增大,中性层逐渐向下位移,直到梁弯曲破坏为变形的增大,中性层逐渐向下位移,直到梁弯曲破坏为

27、止。止。 5.2.3.2 抗弯强度的测定抗弯强度的测定o各树种木材抗弯强度平均值约为各树种木材抗弯强度平均值约为90MPa左右。针叶树左右。针叶树材径向和弦向抗弯强度间有一定的差别,弦向比径向高材径向和弦向抗弯强度间有一定的差别,弦向比径向高出出1012;阔叶树材两个方向上的差别普通不明;阔叶树材两个方向上的差别普通不明显。显。o抗弯强度的测定方法各国不同,区别在于试样的尺寸、抗弯强度的测定方法各国不同,区别在于试样的尺寸、加荷方式和加荷速度的差别。我国国家规范规定:试样加荷方式和加荷速度的差别。我国国家规范规定:试样断面为断面为2020mm,长度为,长度为300mm,跨度为,跨度为240mm

28、;中央荷载,弦向加荷;实验以均匀速度加;中央荷载,弦向加荷;实验以均匀速度加荷,在荷,在1-2分钟内使试样破坏。实验时为防止试样在支分钟内使试样破坏。实验时为防止试样在支座和受力点产生压痕,影响实验结果,在支座和受力点座和受力点产生压痕,影响实验结果,在支座和受力点上应加钢质垫片。垫片的尺寸为上应加钢质垫片。垫片的尺寸为30205mm。 木材抗弯强度的测定木材抗弯强度的测定 抗弯强度用下式计算抗弯强度用下式计算w 3PL/2bh2 (Mpa)12w 1+0.04W-12 (Mpa)式中:式中: w 木材试样气干形状下的抗弯木材试样气干形状下的抗弯强度强度P破坏时的荷载,破坏时的荷载,N;L跨度

29、,跨度,240mm;b试样宽度,试样宽度,mm;h试样高度,试样高度,mm;W实验时试样的含水率实验时试样的含水率 ()。 5.2.3.3 抗弯弹性模量抗弯弹性模量o木材抗弯弹性模量是指木材受力弯曲时,在比例极限内应力木材抗弯弹性模量是指木材受力弯曲时,在比例极限内应力与应变之比,用于计算梁及桁架等弯曲荷载下的变形以及计与应变之比,用于计算梁及桁架等弯曲荷载下的变形以及计算平安荷载。算平安荷载。o木材的抗弯弹性模量代表木材的刚性或弹性,表示在比例极木材的抗弯弹性模量代表木材的刚性或弹性,表示在比例极限以内应力与应变之间的关系,也即表示梁抵抗弯曲或变形限以内应力与应变之间的关系,也即表示梁抵抗弯

30、曲或变形的才干。梁在接受荷载时,其变形与弹性模量成反比,弹性的才干。梁在接受荷载时,其变形与弹性模量成反比,弹性模量大,变形小,其木材刚度也大。模量大,变形小,其木材刚度也大。 木材抗弯弹性模量的测定木材抗弯弹性模量的测定 5.2.3.4 抗弯弹性模量与抗弯强度间的关系抗弯弹性模量与抗弯强度间的关系 o抗弯强度与抗弯弹性模量间成正比关系。目前所实验过的国抗弯强度与抗弯弹性模量间成正比关系。目前所实验过的国产树种中,针叶材抗弯强度最大树种为长苞铁杉产树种中,针叶材抗弯强度最大树种为长苞铁杉122.7Mpa,最小的为柳杉最小的为柳杉53.2Mpa;阔叶材抗弯强度最大的树种为海南;阔叶材抗弯强度最大

31、的树种为海南子京子京183.1Mpa,最小的为兰考泡桐为,最小的为兰考泡桐为28.9Mpa;针叶材;针叶材抗弯弹性模量最大树种为落叶松抗弯弹性模量最大树种为落叶松14.5Gpa,最小的为云杉,最小的为云杉6.2Gpa;阔叶材抗弯弹性模量最大的树种为蚬木;阔叶材抗弯弹性模量最大的树种为蚬木21.1Gpa,最小的为兰考泡桐为最小的为兰考泡桐为4.2Gpa。木材抗弯强度,我国针叶材。木材抗弯强度,我国针叶材大多数树种在大多数树种在60100Mpa之间,阔叶材大多数树种在之间,阔叶材大多数树种在60140Mpa之间。木材抗弯弹性模量,我国针叶材大多数之间。木材抗弯弹性模量,我国针叶材大多数树种在树种在

32、8.012Gpa之间,阔叶材大多数树种在之间,阔叶材大多数树种在8.014.0Gpa之间。之间。 o我国我国356个树种木材在含水率为个树种木材在含水率为15%情况下,抗弯弹情况下,抗弯弹性模量性模量E与抗弯强度与抗弯强度间关系为线型函数,方程如下:间关系为线型函数,方程如下:oE = 0.086+33.7, r=0.84o二者高度亲密相关。抗弯强度测定要容易得多,利用此二者高度亲密相关。抗弯强度测定要容易得多,利用此式可估测木材的抗弯弹性模量。同时,在非破坏的情况式可估测木材的抗弯弹性模量。同时,在非破坏的情况下测得木材的抗弯弹性模量,也可利用此式估测木材的下测得木材的抗弯弹性模量,也可利用

33、此式估测木材的抗弯强度。抗弯强度。 5.2.4 木材的抗剪强度木材的抗剪强度o木材抵抗剪切应力的最大才干,称为抗剪强度。木材抵抗剪切应力的最大才干,称为抗剪强度。o木材抗剪强度视外力作用于木材纹理的方向,分为顺纹抗剪木材抗剪强度视外力作用于木材纹理的方向,分为顺纹抗剪强度和横纹抗剪强度。在实践运用中发生横纹剪切的景象不强度和横纹抗剪强度。在实践运用中发生横纹剪切的景象不仅稀有,而且横纹剪切总是要横向压坏纤维产生拉伸作用而仅稀有,而且横纹剪切总是要横向压坏纤维产生拉伸作用而并非单纯的横纹剪切,因此通常不作为材性目的进展测定。并非单纯的横纹剪切,因此通常不作为材性目的进展测定。木材的横纹抗剪强度为

34、顺纹抗剪强度的木材的横纹抗剪强度为顺纹抗剪强度的34倍。倍。 木材抗剪试样与受力支架木材抗剪试样与受力支架1附件主杆附件主杆 2块块 3L形块形块 4,5螺杆螺杆 6压块压块 7试样试样 8圆头螺钉圆头螺钉 o木材的顺纹抗剪强度视木材受剪面的不同,分木材的顺纹抗剪强度视木材受剪面的不同,分为弦面抗剪强度和径面抗剪强度为弦面抗剪强度和径面抗剪强度,如图。剪切面如图。剪切面平行于年轮的弦面剪切,其破坏常出现于早材平行于年轮的弦面剪切,其破坏常出现于早材部分,在早材和晚材交界处滑行,破坏外表较部分,在早材和晚材交界处滑行,破坏外表较光滑,但略有起伏,面上带有细丝状木毛。剪光滑,但略有起伏,面上带有细

35、丝状木毛。剪切面垂直于年轮的径面,剪切破坏时,其外表切面垂直于年轮的径面,剪切破坏时,其外表较为粗糙,不均匀而无明显木毛。在扩展镜下,较为粗糙,不均匀而无明显木毛。在扩展镜下,早材的一些星散区域上带有细木毛。早材的一些星散区域上带有细木毛。o木材顺剪强度较小,平均只需顺纹抗压强度的木材顺剪强度较小,平均只需顺纹抗压强度的1030。纹理较斜的木材,如交错纹理、。纹理较斜的木材,如交错纹理、涡纹、乱纹等涡纹、乱纹等,其顺剪强度会明显添加。阔叶树其顺剪强度会明显添加。阔叶树材顺剪强度平均比针叶树材高出材顺剪强度平均比针叶树材高出1/2。阔叶树。阔叶树材弦面抗剪强度较径面高出材弦面抗剪强度较径面高出1

36、030,如木,如木射线越兴隆,这种差别更加明显。针叶树材,射线越兴隆,这种差别更加明显。针叶树材,其径面和弦面的抗剪强度大致一样。其径面和弦面的抗剪强度大致一样。 5.2.5 木材的硬度木材的硬度o木材的硬度,是指木材抵抗其它刚体压入的才干。木材的硬度与木木材的硬度,是指木材抵抗其它刚体压入的才干。木材的硬度与木材的密度亲密相关,密度大其硬度那么高,反之那么低。材的密度亲密相关,密度大其硬度那么高,反之那么低。 树种树种密度密度端面硬度端面硬度(Mpa)(Mpa)产地产地泡桐泡桐杉木杉木紫椴紫椴香樟香樟水曲柳水曲柳柞木柞木槭木槭木黄檀黄檀蚬木蚬木0.2830.2830.3760.3760.45

37、10.4510.5350.5350.6430.6430.7480.7480.8800.8800.9230.9231.1281.12819.519.526.526.534.434.440.240.259.959.972.972.9108.8108.8112.4112.4142.3142.3河南河南湖南湖南黑龙江黑龙江安徽安徽黑龙江黑龙江黑龙江黑龙江安徽安徽浙江浙江广西广西木材密度与硬度的关系木材密度与硬度的关系 木材硬度测定方法木材硬度测定方法1半圆形的钢压头;半圆形的钢压头; 2调整螺丝上触点;调整螺丝上触点;3具有弹簧安装的下触点;具有弹簧安装的下触点;4套筒套筒 o同一树种,其端面硬度大于

38、径面和弦面硬度,径面与弦面相同一树种,其端面硬度大于径面和弦面硬度,径面与弦面相差不大。针叶树材平均高出差不大。针叶树材平均高出35,阔叶树材高出,阔叶树材高出25左右。左右。大多数树种的弦面和径面硬度相近,但木射线兴隆的麻栎、大多数树种的弦面和径面硬度相近,但木射线兴隆的麻栎、青冈栎等树种的木材硬度,弦面可高出径面青冈栎等树种的木材硬度,弦面可高出径面510。o木材硬度测定方法有布氏硬度法和金氏硬度法二种。我国国木材硬度测定方法有布氏硬度法和金氏硬度法二种。我国国家规范规定用金氏法,采用电触控制附件测定,如图家规范规定用金氏法,采用电触控制附件测定,如图5-15。试样尺寸为试样尺寸为5050

39、70mm,实验是以每分钟,实验是以每分钟3-6mm的的均匀速度将钢压头的半球完全压入木材,直至均匀速度将钢压头的半球完全压入木材,直至5.64mm深深度为止。对于加压后试样易裂的树种,钢半球压入的深度允度为止。对于加压后试样易裂的树种,钢半球压入的深度允许减至许减至2.82mm,此时截面积为,此时截面积为75mm2。对于含水率为。对于含水率为W%的木材,其硬度按下式计算:的木材,其硬度按下式计算:oHW = K P 5.2.6 木材的冲击韧性木材的冲击韧性 o木材的冲击韧性,是指木材受冲击力而弯曲折断时,试木材的冲击韧性,是指木材受冲击力而弯曲折断时,试样单位面积所吸收的能量。样单位面积所吸收

40、的能量。o吸收的能量越大,阐明木材的韧性越高而脆性越低。冲吸收的能量越大,阐明木材的韧性越高而脆性越低。冲击韧性与其他木材强度性质不同,不是用破坏试样的力击韧性与其他木材强度性质不同,不是用破坏试样的力来表示,而是用破坏试样所耗费的功来表示,而是用破坏试样所耗费的功(kJ/m2)表示。表示。冲击破坏耗费的功愈大,木材韧性愈大,亦即脆性愈小。冲击破坏耗费的功愈大,木材韧性愈大,亦即脆性愈小。实验所得数据不能用于木构造设计的计算,只能作为衡实验所得数据不能用于木构造设计的计算,只能作为衡量木材质量的参考。在消费上常以此作为枪托、飞机、量木材质量的参考。在消费上常以此作为枪托、飞机、车船、木梭、木桶

41、、球棒及运动器械等用材的检验目的。车船、木梭、木桶、球棒及运动器械等用材的检验目的。 o木材冲击韧性的测定,通常采用两种方式,即一次冲击实验木材冲击韧性的测定,通常采用两种方式,即一次冲击实验法和延续冲击实验法,我国国家规范规定采用一次冲击实验法和延续冲击实验法,我国国家规范规定采用一次冲击实验法。法。o试样尺寸为试样尺寸为2020300mm,两支座间间隔跨度为,两支座间间隔跨度为240mm,中央荷载,只作弦向实验,一次冲断。摆锤质,中央荷载,只作弦向实验,一次冲断。摆锤质量量10kg,起始高度为,起始高度为1m,自在落下,试样被冲击折断后,自在落下,试样被冲击折断后,摆锤自在摆动到另一个高度

42、,二次高度势能之差,即为试样摆锤自在摆动到另一个高度,二次高度势能之差,即为试样折断时所吸收的能量,可直接从力学实验机上读出。折断时所吸收的能量,可直接从力学实验机上读出。o实验结果用下式计算:实验结果用下式计算:oT1000Q/bho式中:式中:Q 试样吸收的能量试样吸收的能量(kJ/m2);ob试样的宽度试样的宽度(mm);oh试样的高度试样的高度(mm)。 o国产针叶木材,其冲击韧性数值多在国产针叶木材,其冲击韧性数值多在17.9-67.5kJ/m2(0.179-0.675 kgm/cm2),阔叶材多在阔叶材多在16.0-182.2kJ /m2(0.160-1.822 kgm /cm2)

43、。木材冲击韧性受木材。木材冲击韧性受木材密度、温度和木材缺陷等要素的影响。有关含密度、温度和木材缺陷等要素的影响。有关含水率对木材冲击韧性的影响,说法不一。我国水率对木材冲击韧性的影响,说法不一。我国规范规定,木材冲击实验结果不进展含水率的规范规定,木材冲击实验结果不进展含水率的测定和校正。测定和校正。 5.2.7 木材工艺力学性质木材工艺力学性质 o5.2.7.1 抗劈力抗劈力o木材的抗劈力,是指木材的一端沿纹理方向抵抗劈开的木材的抗劈力,是指木材的一端沿纹理方向抵抗劈开的才干。才干。o抗劈力属于工艺性质,而且关系到其它的工艺性质,如抗劈力属于工艺性质,而且关系到其它的工艺性质,如开榫性。抗

44、劈力大的木材,其握钉力也强。木材抗劈力开榫性。抗劈力大的木材,其握钉力也强。木材抗劈力象其它力学性质一样,受木材密度、木材构造的影响。象其它力学性质一样,受木材密度、木材构造的影响。通常密度大的木材,其抗劈力也大,这种关系表现得非通常密度大的木材,其抗劈力也大,这种关系表现得非常亲密,呈直线关系。在密度一样的条件下,由于细胞常亲密,呈直线关系。在密度一样的条件下,由于细胞的组成不同,阔叶树材的抗劈力大于针叶树材的抗劈力。的组成不同,阔叶树材的抗劈力大于针叶树材的抗劈力。交错纹理、木节可增大抗劈力。木材的含水率对抗劈力交错纹理、木节可增大抗劈力。木材的含水率对抗劈力的影响不明显。的影响不明显。

45、木材径面木材径面(A)与弦面与弦面(B)抗劈力的试样外形抗劈力的试样外形 5.2.7.2 木材的握钉力木材的握钉力o木材的握钉力,是指木材抵抗钉子拔出的才干。木材的握钉力,是指木材抵抗钉子拔出的才干。o木材具有固着钉子的性能,握钉力亦即木材与钉子之间的木材具有固着钉子的性能,握钉力亦即木材与钉子之间的摩擦力。当握钉力的大小取决于木材的种类、含水率、密摩擦力。当握钉力的大小取决于木材的种类、含水率、密度、硬度、弹性、纹理方向、钉子的外形及其与木材接触度、硬度、弹性、纹理方向、钉子的外形及其与木材接触面的大小等。例如水曲柳的径面握钉力为面的大小等。例如水曲柳的径面握钉力为2130N,而端,而端面为

46、面为1460N(圆钉圆钉3.Omm)。密度大的木材其握钉。密度大的木材其握钉力也强,例如含水率力也强,例如含水率15时,紫椴的密度为时,紫椴的密度为0.49,其握,其握钉力为钉力为420N,水曲柳的密度为,水曲柳的密度为0.69,其握钉力为,其握钉力为1460N。5.2.7.3 耐磨性耐磨性o耐磨性是木材抵抗磨损的才干。耐磨性是木材抵抗磨损的才干。o木材磨损是在其外表受摩擦、挤压、冲击和剥木材磨损是在其外表受摩擦、挤压、冲击和剥蚀等,以及这些因子综协作用时,所产生的外蚀等,以及这些因子综协作用时,所产生的外表化过程其特点为磨损部分只需外表外形和表化过程其特点为磨损部分只需外表外形和体积等物理情

47、况的变化,而化学性质不发生改体积等物理情况的变化,而化学性质不发生改动。变化的大小是以磨损部分所损失的分量或动。变化的大小是以磨损部分所损失的分量或体积来衡定。它与树种、密度、方向、硬度、体积来衡定。它与树种、密度、方向、硬度、含水率等有关。这一性质对评价木质地板和耐含水率等有关。这一性质对评价木质地板和耐磨木构件有一定作用。磨木构件有一定作用。 5.2.7.4 弯曲才干弯曲才干o指木材弯曲破坏前的最大弯曲才干可以用曲指木材弯曲破坏前的最大弯曲才干可以用曲率半径的大小来度量。它与树种、树龄、部位、率半径的大小来度量。它与树种、树龄、部位、含水率和温度等有关。木材塑性大,其弯曲才含水率和温度等有

48、关。木材塑性大,其弯曲才干也大。干也大。 5.3 影响木材力学性质的因子影响木材力学性质的因子 o5.3.1 木材水分的影响木材水分的影响 含水率对松木力学强度的影响含水率对松木力学强度的影响AA横向抗弯;横向抗弯;BB顺纹抗压;顺纹抗压;CC顺纹顺纹抗剪抗剪木材含水率对木材力学性质的影木材含水率对木材力学性质的影响,主要是由于单位体积内纤维响,主要是由于单位体积内纤维素和木素分子的数目增多,分子素和木素分子的数目增多,分子间的结合力加强所致。含水率高间的结合力加强所致。含水率高于纤维饱和点,自在水含量添加,于纤维饱和点,自在水含量添加,其强度值不再减小,根本坚持恒其强度值不再减小,根本坚持恒

49、定。经过长期的研讨证明,含水定。经过长期的研讨证明,含水率在纤维饱和点以下,强度的对率在纤维饱和点以下,强度的对数值与含水率成不断线关系。数值与含水率成不断线关系。 5.3.2 木材密度的影响木材密度的影响 o木材密度是决议木材强度和刚度的物质根底,是判别木材木材密度是决议木材强度和刚度的物质根底,是判别木材强度的最正确目的。密度增大,木材强度和刚性增高;密强度的最正确目的。密度增大,木材强度和刚性增高;密度增大,木材的弹性模量呈线性增高;密度增大,木材韧度增大,木材的弹性模量呈线性增高;密度增大,木材韧性也成比例地增长。在通常的情况下,除去木材内含物,性也成比例地增长。在通常的情况下,除去木

50、材内含物,如树脂、树胶等,密度大的木材,其强度高,木材强度与如树脂、树胶等,密度大的木材,其强度高,木材强度与木材密度二者存在着以下指数关系方程。木材密度二者存在着以下指数关系方程。oKno式中:式中:木材强度;木材强度;o 木材密度;木材密度;oK和和n常数,随强度的性质而不同。常数,随强度的性质而不同。 国产树种木材密度与力学性质的关系国产树种木材密度与力学性质的关系 树种树种木材顺纹抗压强度木材顺纹抗压强度 回归方程回归方程 相关系数相关系数木材抗弯强度木材抗弯强度回归方程回归方程 相关系相关系数数杉木杉木14551510.740.74红松红松10671510.640.64落叶松落叶松1

51、1922090.740.74马尾松马尾松油松油松1903.431903.43-101.210.780.78水曲柳水曲柳11312460.740.74紫椴紫椴817200.740.745.3.3 温度温度 o温度对木材力学性能影响比较复杂。普通情况下,室温温度对木材力学性能影响比较复杂。普通情况下,室温范围内,影响较小,但在高温暖极端低温情况下,影响范围内,影响较小,但在高温暖极端低温情况下,影响较大。正温度的变化,在导致木材含水率及其分布产生较大。正温度的变化,在导致木材含水率及其分布产生变化同时,会呵斥木材内产生应力和枯燥等缺陷。主要变化同时,会呵斥木材内产生应力和枯燥等缺陷。主要缘由在于热

52、促使细胞壁物质分子运动加剧,内摩擦减少,缘由在于热促使细胞壁物质分子运动加剧,内摩擦减少,微纤丝间松动添加,引起木材强度下降。如水热处置情微纤丝间松动添加,引起木材强度下降。如水热处置情况下,温度超越况下,温度超越180,木材物质会发生分解;或在,木材物质会发生分解;或在83 左右条件下,长期受热,木材中抽提物、果胶、左右条件下,长期受热,木材中抽提物、果胶、半纤维素等会部分或全部消逝,从而引起木材强度损失,半纤维素等会部分或全部消逝,从而引起木材强度损失,特别是冲击韧性和拉伸强度会有较大的减弱。特别是冲击韧性和拉伸强度会有较大的减弱。5.3.4 木材缺陷的影响木材缺陷的影响 o木材中由于立地

53、条件,生理及生物危害等缘由,木材中由于立地条件,生理及生物危害等缘由,使木材的正常构造发生变异,以致影响木材性使木材的正常构造发生变异,以致影响木材性质,降低木材利用价值的部分,称为木材的缺质,降低木材利用价值的部分,称为木材的缺陷,如木节、斜纹、裂纹、虫眼、变色和腐朽陷,如木节、斜纹、裂纹、虫眼、变色和腐朽等。木材缺陷破坏了木材的正常构造,必然影等。木材缺陷破坏了木材的正常构造,必然影响木材的力学性质,其影响程度视缺陷的种类、响木材的力学性质,其影响程度视缺陷的种类、质地、尺寸和分布等而不同。质地、尺寸和分布等而不同。 5.3.4.1 木节木节o节子的纤维与其周围的纤维成直角或倾斜,节节子的

54、纤维与其周围的纤维成直角或倾斜,节子周围的木材构成斜纹理,使木材纹理的走向子周围的木材构成斜纹理,使木材纹理的走向遭到干扰。节子破坏了木材密度的相对均质性,遭到干扰。节子破坏了木材密度的相对均质性,而且易于引起裂纹。节子对木材力学性质的影而且易于引起裂纹。节子对木材力学性质的影响决议于节子的种类、尺寸、分布及强度的性响决议于节子的种类、尺寸、分布及强度的性质质1卵圆形、卵圆形、2长条形和长条形和3掌状节掌状节 1活节和2死节 木节对横纹抗压强度的影响不明显,当节子位于受力点下方,节子走向与木节对横纹抗压强度的影响不明显,当节子位于受力点下方,节子走向与施力方向一致时,强度不仅不降低反而出现增高

55、的景象。施力方向一致时,强度不仅不降低反而出现增高的景象。木节对抗剪强度的影响研讨得还不多,当弦面受剪时,节子起到加强抗剪木节对抗剪强度的影响研讨得还不多,当弦面受剪时,节子起到加强抗剪强度的作用。强度的作用。 5.3.4.2 斜纹理斜纹理 o斜纹理是指木材纤维的陈列方向与树轴或材面成一角度者。斜纹理是指木材纤维的陈列方向与树轴或材面成一角度者。在原木中斜纹理呈螺旋状,其改动角度自边材向髓心逐渐减在原木中斜纹理呈螺旋状,其改动角度自边材向髓心逐渐减小。在成材中呈倾斜状。关于斜纹理构成的缘由,说法很多,小。在成材中呈倾斜状。关于斜纹理构成的缘由,说法很多,其中以遗传构成斜纹理的景象比较明显,其次

56、有人以为树木其中以遗传构成斜纹理的景象比较明显,其次有人以为树木无主根特别是为蔓生根者构成斜纹理,也有人以为是风、光、无主根特别是为蔓生根者构成斜纹理,也有人以为是风、光、重力等要素单独或共同作用的结果。对于斜纹理的解释尚无重力等要素单独或共同作用的结果。对于斜纹理的解释尚无公认的一致说法。落叶松、桉树及马尾松的斜纹理十清楚显。公认的一致说法。落叶松、桉树及马尾松的斜纹理十清楚显。 斜纹理对木材顺纹抗拉、抗弯和顺纹抗压的影响斜纹理对木材顺纹抗拉、抗弯和顺纹抗压的影响 5.3.4.3 树干外形的缺陷树干外形的缺陷o树干外形的缺陷包括弯曲、尖削、凹兜和大兜。这树干外形的缺陷包括弯曲、尖削、凹兜和大

57、兜。这类缺陷有损于木材的材质,降低成材的出材率,加类缺陷有损于木材的材质,降低成材的出材率,加工时纤维易被切断,降低木材的强度,尤其对抗弯、工时纤维易被切断,降低木材的强度,尤其对抗弯、顺纹抗拉和顺纹抗压强度的影响最为明显。顺纹抗拉和顺纹抗压强度的影响最为明显。5.3.4.4 裂纹裂纹o木材的裂纹,根据裂纹的部位和方向分为径裂和轮裂。裂纹木材的裂纹,根据裂纹的部位和方向分为径裂和轮裂。裂纹不仅发生于木材的储存、加工和运用过程,而且有的树木在不仅发生于木材的储存、加工和运用过程,而且有的树木在立木时期已发生裂纹。立木的轮裂在树干基部较为严重,由立木时期已发生裂纹。立木的轮裂在树干基部较为严重,由

58、下向上逐渐减轻。径裂多在储存期间由于木材枯燥而产生。下向上逐渐减轻。径裂多在储存期间由于木材枯燥而产生。当木材枯燥时原来立木中的裂纹还会继续开展。裂纹不仅降当木材枯燥时原来立木中的裂纹还会继续开展。裂纹不仅降低木材的利用价值,而且影响木材的力学性质,其影响程度低木材的利用价值,而且影响木材的力学性质,其影响程度的大小视裂纹的尺寸、方向和部位而不同。的大小视裂纹的尺寸、方向和部位而不同。 5.3.4.5 应力木应力木o林分中生长正常的林木,通常其干形通直。但当风力或林分中生长正常的林木,通常其干形通直。但当风力或重力作用于树木时,其树干往往发生倾斜或弯曲;或者,重力作用于树木时,其树干往往发生倾

59、斜或弯曲;或者,当树木发生偏冠时,树干中一定部位会构成反常的木材当树木发生偏冠时,树干中一定部位会构成反常的木材组织。这类因树干弯曲构成的异常木材组织。这类因树干弯曲构成的异常木材Abnormal wood被称为应力木被称为应力木Tension wood。针叶树。针叶树中,应力木构成于倾斜、弯曲树干或树枝的下方中,应力木构成于倾斜、弯曲树干或树枝的下方,称之称之为应压木为应压木Compression wood。阔叶树中,应。阔叶树中,应力木产生于倾斜、弯曲树干或树枝的上方,称之为应拉力木产生于倾斜、弯曲树干或树枝的上方,称之为应拉木木Tension wood。应力木在木段的横断面呈偏。应力木在木段的横断面呈偏心状,年轮偏宽的一侧为应力木部分。心状,年轮偏宽的一侧为应力木部分。 针叶树应压木和阔叶树应拉木针叶树应压木和阔叶树应拉木 5.3.4.6 木材的变色和腐朽木材的变色和腐朽o木材为天然有机资料,在保管和运用过程中易蒙受菌类的危木材为天然有机资料,在保管和运用过程中易

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论