版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、概率论与数理统计B考试大纲第2章描述统计学 1. 样本均值、样本方差、样本标准差的计算;2. 样本中位数、分位数;先对数据按从小到大排序。如果np不是整数,则第np+1个数据是100p%分位数。如果np是一个整数,那么100p%分位数取第np和第np+1个值的平均值。特别地,中位数是50%分位数。3. 样本相关系数。,第3章概率论基础 1. 样本空间,事件的并、交、补,文图和德摩根律;,2. 概率的定义、补事件计算公式、并事件计算公式;对于任何的互不相交事件序列,3. 等可能概型的计算,排列和组合;4. 条件概率、乘法公式、全概率公式、贝叶斯公式;,4. 事件独立性及其概率的计算。第4章 随机
2、变量与数学期望 1. 随机变量的分布函数及其性质;2. 离散型随机变量的概率质量函数及其性质,有关概率的计算;离散型随机变量:取值集合有限或者是一个数列xi, i=1,2, 。概率质量函数:, 3. 连续型随机变量的概率密度函数及其性质,有关概率的计算;连续型随机变量:随机变量的可能的取值是一个区间。概率密度函数f(x):对任意一个实数集B有 , , 4 二维随机变量的联合分布函数、联合质量函数、联合密度函数,有关概率的计算;, , 5. 随机变量的独立性,有关概率的计算;随机变量X与Y独立: ;分布函数 离散型 连续型 6. 怎样求连续型随机变量函数的密度函数(先求分布函数,再求导);Y=g
3、(X)7. 数学期望(离散型,连续型),函数的数学期望(离散型,连续性);离散型 连续型 8. 数学期望的性质,当X与Y独立时,EXY=EX EY9. 方差和它的性质;当X与Y独立, ,10 协方差、相关系数,有关性质;Corr(X,Y)=1或-1,当且仅当X和Y线性相关,即P(Y=a+bX)=1 (当b>0, 相关系数为1; 当b<0, 相关系数为-1)当X与Y独立时,X与Y不相关,即 .11. 切比雪夫不等式,弱大数定律,概率的频率意义。切比雪夫不等式弱大数定律:样本均值趋向于总体均值频率趋向于概率第五章 特殊随机变量1 伯努利实验和伯努利分布,数学期望和方差;伯努利(Bern
4、oulli)试验:在一次试验中,其结果可以归为成功和失败两类。xi01EX=pVar(X)=p(1-p)pi1-pp2. 二项分布:应用背景,概率质量函数,单调性,伯努利分解,可加性,数学期望和方差;应用背景:伯努利试验“成功”的概率每次都为p, 这样独立进行n次,那么“成功”的总次数X服从参数为(n, p)二项分布 ,记为XB(n,p)。单调性:P(X=i)当i<(n+1)p递增,当i>(n+1)p递减。二项分布的伯努利分解:设XB(n, p),那么 , 其中Xi相互独立,且为相同的伯努利分布.可加性: 如果X与Y独立, 且XB(n, p),YB(m,p),那么X+YB(n+m,
5、 p) 。3. 泊松分布:应用背景,概率质量函数,单调性,数学期望和方差,可加性,二项分布的泊松近似;应用背景: 根据二项分布的泊松近似,一段时间内某种随机事件发生的次数。单调性: i < l时递增, i > l时递减。泊松分布的可加性: 设X1和X2为相互独立的泊松随机变量,它们的均值分别为l1和l2, 那么X1+X2为均值是l1+l2的泊松随机变量。二项分布的泊松近似:设XB(n, p) 。当n很大p很小时,其分布近似于参数为l =np的泊松分布4. 均匀分布:应用背景,概率密度函数,数学期望和方差,二维均匀分布,有关概率的计算;应用背景:随机变量X在区间a, b上等可能取值概
6、率密度函数:,二维均匀分布:5. 正态分布:应用背景,概率密度函数及其对称性,数学期望和方差,标准正态分布N(0,1),正态分布的标准化和概率计算,线性性质,独立和的性质,分位数及其对称性;应用背景:根据中心极限定理,大量独立随机变量的和近似服从正态分布。密度函数:X N(m, s2), EX=m, Var(X)=s2标准正态分布N(0,1):线性性质:正态随机变量的线性函数仍是正态分布。设X N(m, s2), 那么对任意a, b¹0, Y=a+bXN (a+bm, b2s2). 特别地,。假设 相互独立,且 ,则。标准正态分布Z的100(1- a)%(下)百分位数Za:。对称性:
7、 z1-a= - za6. 指数分布:应用背景,概率密度函数,数学期望和方差,无记忆性,有关概率的计算;应用背景:如果单位时间内“事件发生”数是参数l泊松分布(称为泊松过程),那么两次“发生”之间的间隔时间长度就是参数l的指数分布。概率密度函数:无记忆性7. 卡方分布:定义,可加性,分位数;定义:若Z1, Z2, , Zn相互独立, 且都服从N(0,1) ,则称其平方和服从自由度n的 c2(卡方)分布。可加性:当X1和X2分别为自由度为n1 和n2的 c2随机变量且相互独立时,则X1+X2服从自由度为n1+n2的 c2分布.100(1- a)%百分位数 c2a,n:8. t-分布:定义,对称性
8、,与N(0,1)的关系,分位数;设ZN(0,1), Xc2n ,Z和X独立,则称随机变量服从自由度n的t-分布。当n ®¥,Tn®N(0,1),9. F分布:定义,分位数, 倒数性质。设X和Y分别服从自由度为n和m的c2分布,且相互独立,称服从自由度为n和m的F-分布。, 第六章 统计抽样的分布 1. 总体、样本及其观测值、统计量;样本:若X1, X2, , Xn是独立随机变量, 且具有相同的分布F, 则称它们构成来自分布F的一个样本. n称为样本容量。样本的观测数据称为样本观测值x1, x2, , xn。统计量:不含未知参数的样本函数。2. 样本均值:定义,数学
9、期望和方差;设总体X(不一定是正态分布), EX=m, Var(X)=s2。样本X1, X2, , Xn。样本均值 ,3. 中心极限定理:基本定理,二项分布的正态近似,样本均值的近似分布;基本定理: 设X1, X2, , Xn为独立同分布的随机变量序列, 并均具有均值m和方差s2(无论分布类型是什么), 则对充分大的n (30以上),X1+X2+ + Xn 近似服从正态分布N(nm,ns2)。二项分布的正态近似:设XB(n,p), 对充分大的n(30以上), X近似服从正态分布N(np, np(1-p)样本均值的近似分布: 设总体X(不一定是正态分布), EX=m, Var(X)=s2。样本X
10、1, X2, , Xn。当n充分大(30以上),近似有 4. 样本方差:定义,数学期望;样本方差 , 样本标准差 5. 正态总体:样本均值按N(0,1)(方差已知时)或t-分布(方差未知时),样本方差按卡方分布,样本均值与样本方差独立.定理: 设总体XN(m,s2)。样本X1, X2, , Xn。则(1) , (2) , (3)与S2独立,(4) 。第七章 参数估计 1. 估计量与估计值参数估计:设总体分布为Fq,其中q为未知参数。样本X1, X2, , Xn ,独立且与总体同分布。需要估计q。估计量:用来估计未知参数q的统计量,记为估计值:估计量的观察值 无偏估计量:2. 极大似然估计:定义
11、,似然函数,对数似然方程;似然函数:若总体的密度函数(或质量函数)为f(x|q), 其联合概率函数(称为似然函数)极大似然估计: 求使得 对数似然方程 3. 伯努利分布、泊松分布、正态分布的极大似然估计;贝努里分布:p的极大似然估计是观测数中成功的比例。泊松分布极大似然估计 。正态分布N(m,s2)的极大似然估计:正态分布方差s2的无偏估计 4. 置信区间的定义;参数q的100(1-a)%置信区间满足5. 正态总体均值的双侧置信区间(方差已知);6. 正态总体方差的双侧置信区间.第八章 假设检验 1. 假设检验的基本概念:原假设与备择假设,拒绝域构造原理,显著性水平,两类错误;原假设H0, 备择假设H1;显著性检验:H1是否显著,以至于可以拒绝H0;第一类错误拒绝了正确的假设,第二类错误接受了错误的假设;显著性水平a=P(样本观测值落入拒绝域|H0真)=犯第一类错误的概率。2. 方差已知时正态总体均值的Z检验(双侧,右侧,左侧);双侧检验(临界值法或p值法) 左侧检验(临界值法或p值法) 右侧检验(临界值法或p值法)3. 置信区间与拒绝域的关系;若原假设落在未知参数的100(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《水環境調查方法》课件
- 2020年安徽省中考英语试卷及答案解析
- 小学一年级20以内加减法试题口算速算练习题
- 《护士礼仪行为规范》课件
- 《物业服务内涵》课件
- 银铜合金焊接知识点
- 地产建筑行业技术工作总结
- 会计行业会计人员培训总结
- 精神科护士的综合总结
- 零售业务员工作总结
- 2024年度陶瓷产品代理销售与品牌战略合作协议3篇
- 中国农业银行信用借款合同
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之9:“5领导作用-5.3创新战略”(雷泽佳编制-2025B0)
- 江苏省连云港市2023-2024学年八年级上学期期末数学试题(原卷版)
- 2024版旅游景区旅游巴士租赁合同3篇
- LINUX网络操作系统知到智慧树章节测试课后答案2024年秋湖北交通职业技术学院
- 河北省邯郸市2023-2024学年高一上学期期末质量检测地理试题 附答案
- 医疗机构竞业限制协议
- 2024年度物业管理公司员工奖惩制度3篇
- 【MOOC】药理学-华中科技大学 中国大学慕课MOOC答案
- 交通疏导安全教育培训
评论
0/150
提交评论